Changting Shi, Dongdong Tao, Haibo Liu, Jinlong Bai
{"title":"自动潜航器三维路径快速规划修复方法","authors":"Changting Shi, Dongdong Tao, Haibo Liu, Jinlong Bai","doi":"10.1007/s11036-024-02307-x","DOIUrl":null,"url":null,"abstract":"<p>In response to the local path planning issue encountered by Autonomous Underwater Vehicle (AUV) during autonomous navigation when facing sudden threats or obstacles, a rapid path planning repair solution based on the IRRT*-VSRP method is proposed in this paper. This method combines an enhanced RRT* algorithm with a threat-based variable step-size receding horizon predictive strategy, effectively reducing the search space in three-dimensional environments. Its notable features include rapid local path repair and generation, thereby improving the success rate and efficiency of planning. Simulation results demonstrate that the IRRT*-VSRP algorithm significantly reduces the time required for planning repair and enhances the directionality of tree expansion, rendering it suitable for complex underwater three-dimensional environments and enhancing the efficiency of AUV planning repair.</p>","PeriodicalId":501103,"journal":{"name":"Mobile Networks and Applications","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rapid Planning Repair Method of Three-Dimensional Path for AUV\",\"authors\":\"Changting Shi, Dongdong Tao, Haibo Liu, Jinlong Bai\",\"doi\":\"10.1007/s11036-024-02307-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to the local path planning issue encountered by Autonomous Underwater Vehicle (AUV) during autonomous navigation when facing sudden threats or obstacles, a rapid path planning repair solution based on the IRRT*-VSRP method is proposed in this paper. This method combines an enhanced RRT* algorithm with a threat-based variable step-size receding horizon predictive strategy, effectively reducing the search space in three-dimensional environments. Its notable features include rapid local path repair and generation, thereby improving the success rate and efficiency of planning. Simulation results demonstrate that the IRRT*-VSRP algorithm significantly reduces the time required for planning repair and enhances the directionality of tree expansion, rendering it suitable for complex underwater three-dimensional environments and enhancing the efficiency of AUV planning repair.</p>\",\"PeriodicalId\":501103,\"journal\":{\"name\":\"Mobile Networks and Applications\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11036-024-02307-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11036-024-02307-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Rapid Planning Repair Method of Three-Dimensional Path for AUV
In response to the local path planning issue encountered by Autonomous Underwater Vehicle (AUV) during autonomous navigation when facing sudden threats or obstacles, a rapid path planning repair solution based on the IRRT*-VSRP method is proposed in this paper. This method combines an enhanced RRT* algorithm with a threat-based variable step-size receding horizon predictive strategy, effectively reducing the search space in three-dimensional environments. Its notable features include rapid local path repair and generation, thereby improving the success rate and efficiency of planning. Simulation results demonstrate that the IRRT*-VSRP algorithm significantly reduces the time required for planning repair and enhances the directionality of tree expansion, rendering it suitable for complex underwater three-dimensional environments and enhancing the efficiency of AUV planning repair.