{"title":"可聚合单体溶剂支持包光体量子点的直接原位光刻技术","authors":"Tianhe Li, Pingping Zhang, Shunsheng Wei, Yuyu Jing, Jianbing Shi, Yu Chen, Haizheng Zhong, Gaoling Yang","doi":"10.1002/adom.202400486","DOIUrl":null,"url":null,"abstract":"<p>The heavy use of toxic and volatile solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO), in the chemical synthesis of perovskites is known to pose several sustainability challenges that significantly hinder their mass production for commercial applications. Herein, a polymerizable monomer solvent (4-acryloylmorpholine, ACMO) is introduced that permits the growth and optical lithography of perovskite quantum dots (PQDs) through in situ polymerization. Morphological, structural, and optical analyses show that this polymerizable monomer can act both as a solvent to dissolve the perovskite precursor and as a monomer for photopolymerization reactions, allowing direct in situ fabrication and patterning of PQDs. By direct photolithography, colorful PQD patterns with high photoluminescent quantum yields, high resolution (minimum size of 5 µm), and excellent fluorescence uniformity, are successfully demonstrated. The work provides a new sustainable way of in situ patterning PQDs using polymerizable monomer solvents, leading to significant advances in various integrated applications, such as photonic, energy harvesting, and optoelectronic devices.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 20","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymerizable Monomer Solvents Enabled Direct In Situ Photolithography of Perovskite Quantum Dots\",\"authors\":\"Tianhe Li, Pingping Zhang, Shunsheng Wei, Yuyu Jing, Jianbing Shi, Yu Chen, Haizheng Zhong, Gaoling Yang\",\"doi\":\"10.1002/adom.202400486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The heavy use of toxic and volatile solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO), in the chemical synthesis of perovskites is known to pose several sustainability challenges that significantly hinder their mass production for commercial applications. Herein, a polymerizable monomer solvent (4-acryloylmorpholine, ACMO) is introduced that permits the growth and optical lithography of perovskite quantum dots (PQDs) through in situ polymerization. Morphological, structural, and optical analyses show that this polymerizable monomer can act both as a solvent to dissolve the perovskite precursor and as a monomer for photopolymerization reactions, allowing direct in situ fabrication and patterning of PQDs. By direct photolithography, colorful PQD patterns with high photoluminescent quantum yields, high resolution (minimum size of 5 µm), and excellent fluorescence uniformity, are successfully demonstrated. The work provides a new sustainable way of in situ patterning PQDs using polymerizable monomer solvents, leading to significant advances in various integrated applications, such as photonic, energy harvesting, and optoelectronic devices.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 20\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202400486\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202400486","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polymerizable Monomer Solvents Enabled Direct In Situ Photolithography of Perovskite Quantum Dots
The heavy use of toxic and volatile solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO), in the chemical synthesis of perovskites is known to pose several sustainability challenges that significantly hinder their mass production for commercial applications. Herein, a polymerizable monomer solvent (4-acryloylmorpholine, ACMO) is introduced that permits the growth and optical lithography of perovskite quantum dots (PQDs) through in situ polymerization. Morphological, structural, and optical analyses show that this polymerizable monomer can act both as a solvent to dissolve the perovskite precursor and as a monomer for photopolymerization reactions, allowing direct in situ fabrication and patterning of PQDs. By direct photolithography, colorful PQD patterns with high photoluminescent quantum yields, high resolution (minimum size of 5 µm), and excellent fluorescence uniformity, are successfully demonstrated. The work provides a new sustainable way of in situ patterning PQDs using polymerizable monomer solvents, leading to significant advances in various integrated applications, such as photonic, energy harvesting, and optoelectronic devices.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.