第一类和第二类斯特林数之间的一致关系

A. Lalchhuangliana, S. S. Singh
{"title":"第一类和第二类斯特林数之间的一致关系","authors":"A. Lalchhuangliana, S. S. Singh","doi":"10.1007/s13226-024-00593-5","DOIUrl":null,"url":null,"abstract":"<p>This paper consists of certain congruence properties of Stirling numbers of the first and second kinds. Some congruence relations between <i>s</i>(<i>n</i>, <i>k</i>) and <i>S</i>(<i>n</i>, <i>k</i>) for different modulo are obtained through their generating functions. We also present some exact <i>p</i>-adic valuations of <i>s</i>(<i>n</i>, <i>k</i>) and <i>S</i>(<i>n</i>, <i>k</i>) for some cases, mainly when <span>\\(n-k\\)</span> is divisible by <span>\\(p-1\\)</span> for odd prime <i>p</i>. Some estimates of the <i>p</i>-adic valuation of these two numbers are also presented when <span>\\(p-1\\)</span> does not divide <span>\\(n-k\\)</span>.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruence relation between Stirling numbers of the first and second kinds\",\"authors\":\"A. Lalchhuangliana, S. S. Singh\",\"doi\":\"10.1007/s13226-024-00593-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper consists of certain congruence properties of Stirling numbers of the first and second kinds. Some congruence relations between <i>s</i>(<i>n</i>, <i>k</i>) and <i>S</i>(<i>n</i>, <i>k</i>) for different modulo are obtained through their generating functions. We also present some exact <i>p</i>-adic valuations of <i>s</i>(<i>n</i>, <i>k</i>) and <i>S</i>(<i>n</i>, <i>k</i>) for some cases, mainly when <span>\\\\(n-k\\\\)</span> is divisible by <span>\\\\(p-1\\\\)</span> for odd prime <i>p</i>. Some estimates of the <i>p</i>-adic valuation of these two numbers are also presented when <span>\\\\(p-1\\\\)</span> does not divide <span>\\\\(n-k\\\\)</span>.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00593-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00593-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究斯特林数第一种和第二种的某些全等性质。通过它们的生成函数,我们得到了不同模数的 s(n, k) 和 S(n, k) 之间的一些全等关系。我们还提出了一些情况下 s(n, k) 和 S(n, k) 的精确 p-adic 估值,主要是当\(n-k\) 被奇素数 p 的\(p-1\) 除时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruence relation between Stirling numbers of the first and second kinds

This paper consists of certain congruence properties of Stirling numbers of the first and second kinds. Some congruence relations between s(nk) and S(nk) for different modulo are obtained through their generating functions. We also present some exact p-adic valuations of s(nk) and S(nk) for some cases, mainly when \(n-k\) is divisible by \(p-1\) for odd prime p. Some estimates of the p-adic valuation of these two numbers are also presented when \(p-1\) does not divide \(n-k\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信