{"title":"平衡超立方体中的边缘不相交哈密顿循环及其在容错数据广播中的应用","authors":"Shuai Liu, Yan Wang, Jianxi Fan, Baolei Cheng","doi":"10.1142/s0129054124500047","DOIUrl":null,"url":null,"abstract":"<p>The existence of multiple edge-disjoint Hamiltonian cycles (EDHCs for short) is a desirable property of interconnection networks. These parallel cycles can provide an advantage for algorithms that require a ring structure. Additionally, EDHCs can enhance all-to-all data broadcasting and edge fault tolerance in network communications. In this paper, we investigate the construction of EDHCs in the balanced hypercube, which is a variant of the hypercube with many attractive properties, such as strong connectivity, regularity, and symmetry. In particular, each processor in the balanced hypercube has a backup processor that shares the common neighbors, enabling fault tolerance and efficient system reconfiguration. In 2019, Lü <i>et al.</i> provided an algorithm to construct two EDHCs in an <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-dimensional balanced hypercube <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> for <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. We further study this topic and give some construction schemes to construct <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mn>2</mn></mrow><mrow><mo stretchy=\"false\">⌊</mo><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi><mo stretchy=\"false\">⌋</mo></mrow></msup></math></span><span></span> EDHCs in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Since <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>n</mi></math></span><span></span>-regular, our result is optimal for <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup></math></span><span></span> (<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>1</mn></math></span><span></span>). In addition, we simulate the fault-tolerant data broadcasting through these parallel cycles as transmission channels.</p>","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-Disjoint Hamiltonian Cycles in Balanced Hypercubes with Applications to Fault-Tolerant Data Broadcasting\",\"authors\":\"Shuai Liu, Yan Wang, Jianxi Fan, Baolei Cheng\",\"doi\":\"10.1142/s0129054124500047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The existence of multiple edge-disjoint Hamiltonian cycles (EDHCs for short) is a desirable property of interconnection networks. These parallel cycles can provide an advantage for algorithms that require a ring structure. Additionally, EDHCs can enhance all-to-all data broadcasting and edge fault tolerance in network communications. In this paper, we investigate the construction of EDHCs in the balanced hypercube, which is a variant of the hypercube with many attractive properties, such as strong connectivity, regularity, and symmetry. In particular, each processor in the balanced hypercube has a backup processor that shares the common neighbors, enabling fault tolerance and efficient system reconfiguration. In 2019, Lü <i>et al.</i> provided an algorithm to construct two EDHCs in an <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span>-dimensional balanced hypercube <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> for <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. We further study this topic and give some construction schemes to construct <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mn>2</mn></mrow><mrow><mo stretchy=\\\"false\\\">⌊</mo><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi><mo stretchy=\\\"false\\\">⌋</mo></mrow></msup></math></span><span></span> EDHCs in <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> for <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Since <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mi>n</mi></math></span><span></span>-regular, our result is optimal for <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup></math></span><span></span> (<span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>r</mi><mo>≥</mo><mn>1</mn></math></span><span></span>). In addition, we simulate the fault-tolerant data broadcasting through these parallel cycles as transmission channels.</p>\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054124500047\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124500047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Edge-Disjoint Hamiltonian Cycles in Balanced Hypercubes with Applications to Fault-Tolerant Data Broadcasting
The existence of multiple edge-disjoint Hamiltonian cycles (EDHCs for short) is a desirable property of interconnection networks. These parallel cycles can provide an advantage for algorithms that require a ring structure. Additionally, EDHCs can enhance all-to-all data broadcasting and edge fault tolerance in network communications. In this paper, we investigate the construction of EDHCs in the balanced hypercube, which is a variant of the hypercube with many attractive properties, such as strong connectivity, regularity, and symmetry. In particular, each processor in the balanced hypercube has a backup processor that shares the common neighbors, enabling fault tolerance and efficient system reconfiguration. In 2019, Lü et al. provided an algorithm to construct two EDHCs in an -dimensional balanced hypercube for . We further study this topic and give some construction schemes to construct EDHCs in for . Since is -regular, our result is optimal for (). In addition, we simulate the fault-tolerant data broadcasting through these parallel cycles as transmission channels.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing