{"title":"一类振荡积分的点时空估计及其应用","authors":"JinMyong Kim, JinMyong An","doi":"10.1007/s13226-024-00589-1","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the point-wise time-space estimates for a class of oscillatory integrals given by <span>\\(\\int _{\\mathbb R^{n} }e^{i<x,\\; \\xi >\\pm itP^{\\frac{1}{2} } (\\xi )} P^{-\\frac{\\alpha }{2} } (\\xi )d\\xi \\)</span>, where <i>P</i> is a real non-degenerate elliptic polynomial of order <span>\\(m\\ge 4\\)</span> on <span>\\(\\mathbb R^{n} \\)</span>. These estimates are applied to obtain time-space integrability estimates with regularity for solutions to higher order wave-type equations.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"222 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-wise time-space estimates for a class of oscillatory integrals and their applications\",\"authors\":\"JinMyong Kim, JinMyong An\",\"doi\":\"10.1007/s13226-024-00589-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the point-wise time-space estimates for a class of oscillatory integrals given by <span>\\\\(\\\\int _{\\\\mathbb R^{n} }e^{i<x,\\\\; \\\\xi >\\\\pm itP^{\\\\frac{1}{2} } (\\\\xi )} P^{-\\\\frac{\\\\alpha }{2} } (\\\\xi )d\\\\xi \\\\)</span>, where <i>P</i> is a real non-degenerate elliptic polynomial of order <span>\\\\(m\\\\ge 4\\\\)</span> on <span>\\\\(\\\\mathbb R^{n} \\\\)</span>. These estimates are applied to obtain time-space integrability estimates with regularity for solutions to higher order wave-type equations.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"222 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00589-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00589-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Point-wise time-space estimates for a class of oscillatory integrals and their applications
This paper investigates the point-wise time-space estimates for a class of oscillatory integrals given by \(\int _{\mathbb R^{n} }e^{i<x,\; \xi >\pm itP^{\frac{1}{2} } (\xi )} P^{-\frac{\alpha }{2} } (\xi )d\xi \), where P is a real non-degenerate elliptic polynomial of order \(m\ge 4\) on \(\mathbb R^{n} \). These estimates are applied to obtain time-space integrability estimates with regularity for solutions to higher order wave-type equations.