关于一般表面截面具有负科代拉维度的品种

Pub Date : 2024-04-19 DOI:10.1002/mana.202300565
Ciro Ciliberto, Claudio Fontanari
{"title":"关于一般表面截面具有负科代拉维度的品种","authors":"Ciro Ciliberto,&nbsp;Claudio Fontanari","doi":"10.1002/mana.202300565","DOIUrl":null,"url":null,"abstract":"<p>In this paper, inspired by work of Fano, Morin, and Campana–Flenner, we give a projective classification of varieties of dimension 3 whose general hyperplane sections have negative Kodaira dimension, and we partly extend such a classification to varieties of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$n\\geqslant 4$</annotation>\n </semantics></math> whose general surface sections have negative Kodaira dimension. In particular, we prove that a variety of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\geqslant 3$</annotation>\n </semantics></math> whose general surface sections have negative Kodaira dimension is birationally equivalent to the product of a general surface section times <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <annotation>${\\mathbb {P}}^{n-2}$</annotation>\n </semantics></math> unless (possibly) if the variety is a cubic hypersurface.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On varieties whose general surface section has negative Kodaira dimension\",\"authors\":\"Ciro Ciliberto,&nbsp;Claudio Fontanari\",\"doi\":\"10.1002/mana.202300565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, inspired by work of Fano, Morin, and Campana–Flenner, we give a projective classification of varieties of dimension 3 whose general hyperplane sections have negative Kodaira dimension, and we partly extend such a classification to varieties of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 4$</annotation>\\n </semantics></math> whose general surface sections have negative Kodaira dimension. In particular, we prove that a variety of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 3$</annotation>\\n </semantics></math> whose general surface sections have negative Kodaira dimension is birationally equivalent to the product of a general surface section times <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <annotation>${\\\\mathbb {P}}^{n-2}$</annotation>\\n </semantics></math> unless (possibly) if the variety is a cubic hypersurface.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,受法诺、莫林和坎帕纳-弗伦纳的研究启发,我们给出了一般超平面截面具有负科戴拉维的维数为 3 的综的投影分类,并将这种分类部分扩展到一般曲面截面具有负科戴拉维的维的综。特别是,我们证明了一般曲面截面具有负 Kodaira 维的维数变种与一般曲面截面倍的乘积具有双向等价性,除非(可能)该变种是立方超曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On varieties whose general surface section has negative Kodaira dimension

In this paper, inspired by work of Fano, Morin, and Campana–Flenner, we give a projective classification of varieties of dimension 3 whose general hyperplane sections have negative Kodaira dimension, and we partly extend such a classification to varieties of dimension n 4 $n\geqslant 4$ whose general surface sections have negative Kodaira dimension. In particular, we prove that a variety of dimension n 3 $n\geqslant 3$ whose general surface sections have negative Kodaira dimension is birationally equivalent to the product of a general surface section times P n 2 ${\mathbb {P}}^{n-2}$ unless (possibly) if the variety is a cubic hypersurface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信