{"title":"利用 DenseNet 和 CNN 进行数据融合和移动边缘计算,增强肺癌诊断能力","authors":"Chengping Zhang, Muhammad Aamir, Yurong Guan, Muna Al-Razgan, Emad Mahrous Awwad, Rizwan Ullah, Uzair Aslam Bhatti, Yazeed Yasin Ghadi","doi":"10.1186/s13677-024-00597-w","DOIUrl":null,"url":null,"abstract":"The recent advancements in automated lung cancer diagnosis through the application of Convolutional Neural Networks (CNN) on Computed Tomography (CT) scans have marked a significant leap in medical imaging and diagnostics. The precision of these CNN-based classifiers in detecting and analyzing lung cancer symptoms has opened new avenues in early detection and treatment planning. However, despite these technological strides, there are critical areas that require further exploration and development. In this landscape, computer-aided diagnostic systems and artificial intelligence, particularly deep learning methods like the region proposal network, the dual path network, and local binary patterns, have become pivotal. However, these methods face challenges such as limited interpretability, data variability handling issues, and insufficient generalization. Addressing these challenges is key to enhancing early detection and accurate diagnosis, fundamental for effective treatment planning and improving patient outcomes. This study introduces an advanced approach that combines a Convolutional Neural Network (CNN) with DenseNet, leveraging data fusion and mobile edge computing for lung cancer identification and classification. The integration of data fusion techniques enables the system to amalgamate information from multiple sources, enhancing the robustness and accuracy of the model. Mobile edge computing facilitates faster processing and analysis of CT scan images by bringing computational resources closer to the data source, crucial for real-time applications. The images undergo preprocessing, including resizing and rescaling, to optimize feature extraction. The DenseNet-CNN model, strengthened by data fusion and edge computing capabilities, excels in extracting and learning features from these CT scans, effectively distinguishing between healthy and cancerous lung tissues. The classification categories include Normal, Benign, and Malignant, with the latter further sub-categorized into adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. In controlled experiments, this approach outperformed existing state-of-the-art methods, achieving an impressive accuracy of 99%. This indicates its potential as a powerful tool in the early detection and classification of lung cancer, a significant advancement in medical imaging and diagnostic technology.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN\",\"authors\":\"Chengping Zhang, Muhammad Aamir, Yurong Guan, Muna Al-Razgan, Emad Mahrous Awwad, Rizwan Ullah, Uzair Aslam Bhatti, Yazeed Yasin Ghadi\",\"doi\":\"10.1186/s13677-024-00597-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent advancements in automated lung cancer diagnosis through the application of Convolutional Neural Networks (CNN) on Computed Tomography (CT) scans have marked a significant leap in medical imaging and diagnostics. The precision of these CNN-based classifiers in detecting and analyzing lung cancer symptoms has opened new avenues in early detection and treatment planning. However, despite these technological strides, there are critical areas that require further exploration and development. In this landscape, computer-aided diagnostic systems and artificial intelligence, particularly deep learning methods like the region proposal network, the dual path network, and local binary patterns, have become pivotal. However, these methods face challenges such as limited interpretability, data variability handling issues, and insufficient generalization. Addressing these challenges is key to enhancing early detection and accurate diagnosis, fundamental for effective treatment planning and improving patient outcomes. This study introduces an advanced approach that combines a Convolutional Neural Network (CNN) with DenseNet, leveraging data fusion and mobile edge computing for lung cancer identification and classification. The integration of data fusion techniques enables the system to amalgamate information from multiple sources, enhancing the robustness and accuracy of the model. Mobile edge computing facilitates faster processing and analysis of CT scan images by bringing computational resources closer to the data source, crucial for real-time applications. The images undergo preprocessing, including resizing and rescaling, to optimize feature extraction. The DenseNet-CNN model, strengthened by data fusion and edge computing capabilities, excels in extracting and learning features from these CT scans, effectively distinguishing between healthy and cancerous lung tissues. The classification categories include Normal, Benign, and Malignant, with the latter further sub-categorized into adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. In controlled experiments, this approach outperformed existing state-of-the-art methods, achieving an impressive accuracy of 99%. This indicates its potential as a powerful tool in the early detection and classification of lung cancer, a significant advancement in medical imaging and diagnostic technology.\",\"PeriodicalId\":501257,\"journal\":{\"name\":\"Journal of Cloud Computing\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13677-024-00597-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00597-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN
The recent advancements in automated lung cancer diagnosis through the application of Convolutional Neural Networks (CNN) on Computed Tomography (CT) scans have marked a significant leap in medical imaging and diagnostics. The precision of these CNN-based classifiers in detecting and analyzing lung cancer symptoms has opened new avenues in early detection and treatment planning. However, despite these technological strides, there are critical areas that require further exploration and development. In this landscape, computer-aided diagnostic systems and artificial intelligence, particularly deep learning methods like the region proposal network, the dual path network, and local binary patterns, have become pivotal. However, these methods face challenges such as limited interpretability, data variability handling issues, and insufficient generalization. Addressing these challenges is key to enhancing early detection and accurate diagnosis, fundamental for effective treatment planning and improving patient outcomes. This study introduces an advanced approach that combines a Convolutional Neural Network (CNN) with DenseNet, leveraging data fusion and mobile edge computing for lung cancer identification and classification. The integration of data fusion techniques enables the system to amalgamate information from multiple sources, enhancing the robustness and accuracy of the model. Mobile edge computing facilitates faster processing and analysis of CT scan images by bringing computational resources closer to the data source, crucial for real-time applications. The images undergo preprocessing, including resizing and rescaling, to optimize feature extraction. The DenseNet-CNN model, strengthened by data fusion and edge computing capabilities, excels in extracting and learning features from these CT scans, effectively distinguishing between healthy and cancerous lung tissues. The classification categories include Normal, Benign, and Malignant, with the latter further sub-categorized into adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. In controlled experiments, this approach outperformed existing state-of-the-art methods, achieving an impressive accuracy of 99%. This indicates its potential as a powerful tool in the early detection and classification of lung cancer, a significant advancement in medical imaging and diagnostic technology.