{"title":"眼疾诊断中的多模态融合策略","authors":"Sara El-Ateif, Ali Idri","doi":"10.1007/s10278-024-01105-x","DOIUrl":null,"url":null,"abstract":"<p>Multimodality fusion has gained significance in medical applications, particularly in diagnosing challenging diseases like eye diseases, notably diabetic eye diseases that pose risks of vision loss and blindness. Mono-modality eye disease diagnosis proves difficult, often missing crucial disease indicators. In response, researchers advocate multimodality-based approaches to enhance diagnostics. This study is a unique exploration, evaluating three multimodality fusion strategies—early, joint, and late—in conjunction with state-of-the-art convolutional neural network models for automated eye disease binary detection across three datasets: fundus fluorescein angiography, macula, and combination of digital retinal images for vessel extraction, structured analysis of the retina, and high-resolution fundus. Findings reveal the efficacy of each fusion strategy: type 0 early fusion with DenseNet121 achieves an impressive 99.45% average accuracy. InceptionResNetV2 emerges as the top-performing joint fusion architecture with an average accuracy of 99.58%. Late fusion ResNet50V2 achieves a perfect score of 100% across all metrics, surpassing both early and joint fusion. Comparative analysis demonstrates that late fusion ResNet50V2 matches the accuracy of state-of-the-art feature-level fusion model for multiview learning. In conclusion, this study substantiates late fusion as the optimal strategy for eye disease diagnosis compared to early and joint fusion, showcasing its superiority in leveraging multimodal information.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"206 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodality Fusion Strategies in Eye Disease Diagnosis\",\"authors\":\"Sara El-Ateif, Ali Idri\",\"doi\":\"10.1007/s10278-024-01105-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multimodality fusion has gained significance in medical applications, particularly in diagnosing challenging diseases like eye diseases, notably diabetic eye diseases that pose risks of vision loss and blindness. Mono-modality eye disease diagnosis proves difficult, often missing crucial disease indicators. In response, researchers advocate multimodality-based approaches to enhance diagnostics. This study is a unique exploration, evaluating three multimodality fusion strategies—early, joint, and late—in conjunction with state-of-the-art convolutional neural network models for automated eye disease binary detection across three datasets: fundus fluorescein angiography, macula, and combination of digital retinal images for vessel extraction, structured analysis of the retina, and high-resolution fundus. Findings reveal the efficacy of each fusion strategy: type 0 early fusion with DenseNet121 achieves an impressive 99.45% average accuracy. InceptionResNetV2 emerges as the top-performing joint fusion architecture with an average accuracy of 99.58%. Late fusion ResNet50V2 achieves a perfect score of 100% across all metrics, surpassing both early and joint fusion. Comparative analysis demonstrates that late fusion ResNet50V2 matches the accuracy of state-of-the-art feature-level fusion model for multiview learning. In conclusion, this study substantiates late fusion as the optimal strategy for eye disease diagnosis compared to early and joint fusion, showcasing its superiority in leveraging multimodal information.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01105-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01105-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Multimodality Fusion Strategies in Eye Disease Diagnosis
Multimodality fusion has gained significance in medical applications, particularly in diagnosing challenging diseases like eye diseases, notably diabetic eye diseases that pose risks of vision loss and blindness. Mono-modality eye disease diagnosis proves difficult, often missing crucial disease indicators. In response, researchers advocate multimodality-based approaches to enhance diagnostics. This study is a unique exploration, evaluating three multimodality fusion strategies—early, joint, and late—in conjunction with state-of-the-art convolutional neural network models for automated eye disease binary detection across three datasets: fundus fluorescein angiography, macula, and combination of digital retinal images for vessel extraction, structured analysis of the retina, and high-resolution fundus. Findings reveal the efficacy of each fusion strategy: type 0 early fusion with DenseNet121 achieves an impressive 99.45% average accuracy. InceptionResNetV2 emerges as the top-performing joint fusion architecture with an average accuracy of 99.58%. Late fusion ResNet50V2 achieves a perfect score of 100% across all metrics, surpassing both early and joint fusion. Comparative analysis demonstrates that late fusion ResNet50V2 matches the accuracy of state-of-the-art feature-level fusion model for multiview learning. In conclusion, this study substantiates late fusion as the optimal strategy for eye disease diagnosis compared to early and joint fusion, showcasing its superiority in leveraging multimodal information.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.