Giulia Gazzaniga, Marta Voltini, Alessandro Carletti, Elisa Lenta, Federica Meloni, Domenica Federica Briganti, Maria Antonietta Avanzini, Patrizia Comoli, Mirko Belliato
{"title":"间充质基质细胞作为一种新的治疗方法在急性呼吸窘迫综合征和肺纤维化中的潜在应用","authors":"Giulia Gazzaniga, Marta Voltini, Alessandro Carletti, Elisa Lenta, Federica Meloni, Domenica Federica Briganti, Maria Antonietta Avanzini, Patrizia Comoli, Mirko Belliato","doi":"10.1186/s12931-024-02795-1","DOIUrl":null,"url":null,"abstract":"While the COVID-19 outbreak and its complications are still under investigation, post-inflammatory pulmonary fibrosis (PF) has already been described as a long-term sequela of acute respiratory distress syndrome (ARDS) secondary to SARS-CoV2 infection. However, therapeutical strategies for patients with ARDS and PF are still limited and do not significantly extend lifespan. So far, lung transplantation remains the only definitive treatment for end-stage PF. Over the last years, numerous preclinical and clinical studies have shown that allogeneic mesenchymal stromal cells (MSCs) might represent a promising therapeutical approach in several lung disorders, and their potential for ARDS treatment and PF prevention has been investigated during the COVID-19 pandemic. From April 2020 to April 2022, we treated six adult patients with moderate COVID-19-related ARDS in a late proliferative stage with up to two same-dose infusions of third-party allogeneic bone marrow-derived MSCs (BM-MSCs), administered intravenously 15 days apart. No major adverse events were registered. Four patients completed the treatment and reached ICU discharge, while two received only one dose of MSCs due to multiorgan dysfunction syndrome (MODS) and subsequent death. All four survivors showed improved gas exchanges (PaO2/FiO2 ratio > 200), contrary to the others. Furthermore, LDH trends after MSCs significantly differed between survivors and the deceased. Although further investigations and shared protocols are still needed, the safety of MSC therapy has been recurrently shown, and its potential in treating ARDS and preventing PF might represent a new therapeutic strategy.","PeriodicalId":21109,"journal":{"name":"Respiratory Research","volume":"38 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential application of mesenchymal stromal cells as a new therapeutic approach in acute respiratory distress syndrome and pulmonary fibrosis\",\"authors\":\"Giulia Gazzaniga, Marta Voltini, Alessandro Carletti, Elisa Lenta, Federica Meloni, Domenica Federica Briganti, Maria Antonietta Avanzini, Patrizia Comoli, Mirko Belliato\",\"doi\":\"10.1186/s12931-024-02795-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the COVID-19 outbreak and its complications are still under investigation, post-inflammatory pulmonary fibrosis (PF) has already been described as a long-term sequela of acute respiratory distress syndrome (ARDS) secondary to SARS-CoV2 infection. However, therapeutical strategies for patients with ARDS and PF are still limited and do not significantly extend lifespan. So far, lung transplantation remains the only definitive treatment for end-stage PF. Over the last years, numerous preclinical and clinical studies have shown that allogeneic mesenchymal stromal cells (MSCs) might represent a promising therapeutical approach in several lung disorders, and their potential for ARDS treatment and PF prevention has been investigated during the COVID-19 pandemic. From April 2020 to April 2022, we treated six adult patients with moderate COVID-19-related ARDS in a late proliferative stage with up to two same-dose infusions of third-party allogeneic bone marrow-derived MSCs (BM-MSCs), administered intravenously 15 days apart. No major adverse events were registered. Four patients completed the treatment and reached ICU discharge, while two received only one dose of MSCs due to multiorgan dysfunction syndrome (MODS) and subsequent death. All four survivors showed improved gas exchanges (PaO2/FiO2 ratio > 200), contrary to the others. Furthermore, LDH trends after MSCs significantly differed between survivors and the deceased. Although further investigations and shared protocols are still needed, the safety of MSC therapy has been recurrently shown, and its potential in treating ARDS and preventing PF might represent a new therapeutic strategy.\",\"PeriodicalId\":21109,\"journal\":{\"name\":\"Respiratory Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12931-024-02795-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-02795-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Potential application of mesenchymal stromal cells as a new therapeutic approach in acute respiratory distress syndrome and pulmonary fibrosis
While the COVID-19 outbreak and its complications are still under investigation, post-inflammatory pulmonary fibrosis (PF) has already been described as a long-term sequela of acute respiratory distress syndrome (ARDS) secondary to SARS-CoV2 infection. However, therapeutical strategies for patients with ARDS and PF are still limited and do not significantly extend lifespan. So far, lung transplantation remains the only definitive treatment for end-stage PF. Over the last years, numerous preclinical and clinical studies have shown that allogeneic mesenchymal stromal cells (MSCs) might represent a promising therapeutical approach in several lung disorders, and their potential for ARDS treatment and PF prevention has been investigated during the COVID-19 pandemic. From April 2020 to April 2022, we treated six adult patients with moderate COVID-19-related ARDS in a late proliferative stage with up to two same-dose infusions of third-party allogeneic bone marrow-derived MSCs (BM-MSCs), administered intravenously 15 days apart. No major adverse events were registered. Four patients completed the treatment and reached ICU discharge, while two received only one dose of MSCs due to multiorgan dysfunction syndrome (MODS) and subsequent death. All four survivors showed improved gas exchanges (PaO2/FiO2 ratio > 200), contrary to the others. Furthermore, LDH trends after MSCs significantly differed between survivors and the deceased. Although further investigations and shared protocols are still needed, the safety of MSC therapy has been recurrently shown, and its potential in treating ARDS and preventing PF might represent a new therapeutic strategy.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.