{"title":"传递中心器和纤维部分双曲系统","authors":"Danijela Damjanović, Amie Wilkinson, Disheng Xu","doi":"10.1093/imrn/rnae064","DOIUrl":null,"url":null,"abstract":"We prove several rigidity results about the centralizer of a smooth diffeomorphism, concentrating on two families of examples: diffeomorphisms with transitive centralizer, and perturbations of isometric extensions of Anosov diffeomorphisms of nilmanifolds. We classify all smooth diffeomorphisms with transitive centralizer: they are exactly the maps that preserve a principal fiber bundle structure, acting minimally on the fibers and trivially on the base. We also show that for any smooth, accessible isometric extension $f_{0}\\colon M\\to M$ of an Anosov diffeomorphism of a nilmanifold, subject to a spectral bunching condition, any $f\\in \\textrm{Diff}^{\\infty }(M)$ sufficiently $C^{1}$-close to $f_{0}$ has centralizer a Lie group. If the dimension of this Lie group equals the dimension of the fiber, then $f$ is a principal fiber bundle morphism covering an Anosov diffeomorphism. Using the results of this paper, we classify the centralizer of any partially hyperbolic diffeomorphism of a $3$-dimensional, nontoral nilmanifold: either the centralizer is virtually trivial, or the diffeomorphism is an isometric extension of an Anosov diffeomorphism, and the centralizer is virtually ${{\\mathbb{Z}}}\\times{{\\mathbb{T}}}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transitive Centralizer and Fibered Partially Hyperbolic Systems\",\"authors\":\"Danijela Damjanović, Amie Wilkinson, Disheng Xu\",\"doi\":\"10.1093/imrn/rnae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove several rigidity results about the centralizer of a smooth diffeomorphism, concentrating on two families of examples: diffeomorphisms with transitive centralizer, and perturbations of isometric extensions of Anosov diffeomorphisms of nilmanifolds. We classify all smooth diffeomorphisms with transitive centralizer: they are exactly the maps that preserve a principal fiber bundle structure, acting minimally on the fibers and trivially on the base. We also show that for any smooth, accessible isometric extension $f_{0}\\\\colon M\\\\to M$ of an Anosov diffeomorphism of a nilmanifold, subject to a spectral bunching condition, any $f\\\\in \\\\textrm{Diff}^{\\\\infty }(M)$ sufficiently $C^{1}$-close to $f_{0}$ has centralizer a Lie group. If the dimension of this Lie group equals the dimension of the fiber, then $f$ is a principal fiber bundle morphism covering an Anosov diffeomorphism. Using the results of this paper, we classify the centralizer of any partially hyperbolic diffeomorphism of a $3$-dimensional, nontoral nilmanifold: either the centralizer is virtually trivial, or the diffeomorphism is an isometric extension of an Anosov diffeomorphism, and the centralizer is virtually ${{\\\\mathbb{Z}}}\\\\times{{\\\\mathbb{T}}}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transitive Centralizer and Fibered Partially Hyperbolic Systems
We prove several rigidity results about the centralizer of a smooth diffeomorphism, concentrating on two families of examples: diffeomorphisms with transitive centralizer, and perturbations of isometric extensions of Anosov diffeomorphisms of nilmanifolds. We classify all smooth diffeomorphisms with transitive centralizer: they are exactly the maps that preserve a principal fiber bundle structure, acting minimally on the fibers and trivially on the base. We also show that for any smooth, accessible isometric extension $f_{0}\colon M\to M$ of an Anosov diffeomorphism of a nilmanifold, subject to a spectral bunching condition, any $f\in \textrm{Diff}^{\infty }(M)$ sufficiently $C^{1}$-close to $f_{0}$ has centralizer a Lie group. If the dimension of this Lie group equals the dimension of the fiber, then $f$ is a principal fiber bundle morphism covering an Anosov diffeomorphism. Using the results of this paper, we classify the centralizer of any partially hyperbolic diffeomorphism of a $3$-dimensional, nontoral nilmanifold: either the centralizer is virtually trivial, or the diffeomorphism is an isometric extension of an Anosov diffeomorphism, and the centralizer is virtually ${{\mathbb{Z}}}\times{{\mathbb{T}}}$.