传递中心器和纤维部分双曲系统

Pub Date : 2024-04-18 DOI:10.1093/imrn/rnae064
Danijela Damjanović, Amie Wilkinson, Disheng Xu
{"title":"传递中心器和纤维部分双曲系统","authors":"Danijela Damjanović, Amie Wilkinson, Disheng Xu","doi":"10.1093/imrn/rnae064","DOIUrl":null,"url":null,"abstract":"We prove several rigidity results about the centralizer of a smooth diffeomorphism, concentrating on two families of examples: diffeomorphisms with transitive centralizer, and perturbations of isometric extensions of Anosov diffeomorphisms of nilmanifolds. We classify all smooth diffeomorphisms with transitive centralizer: they are exactly the maps that preserve a principal fiber bundle structure, acting minimally on the fibers and trivially on the base. We also show that for any smooth, accessible isometric extension $f_{0}\\colon M\\to M$ of an Anosov diffeomorphism of a nilmanifold, subject to a spectral bunching condition, any $f\\in \\textrm{Diff}^{\\infty }(M)$ sufficiently $C^{1}$-close to $f_{0}$ has centralizer a Lie group. If the dimension of this Lie group equals the dimension of the fiber, then $f$ is a principal fiber bundle morphism covering an Anosov diffeomorphism. Using the results of this paper, we classify the centralizer of any partially hyperbolic diffeomorphism of a $3$-dimensional, nontoral nilmanifold: either the centralizer is virtually trivial, or the diffeomorphism is an isometric extension of an Anosov diffeomorphism, and the centralizer is virtually ${{\\mathbb{Z}}}\\times{{\\mathbb{T}}}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transitive Centralizer and Fibered Partially Hyperbolic Systems\",\"authors\":\"Danijela Damjanović, Amie Wilkinson, Disheng Xu\",\"doi\":\"10.1093/imrn/rnae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove several rigidity results about the centralizer of a smooth diffeomorphism, concentrating on two families of examples: diffeomorphisms with transitive centralizer, and perturbations of isometric extensions of Anosov diffeomorphisms of nilmanifolds. We classify all smooth diffeomorphisms with transitive centralizer: they are exactly the maps that preserve a principal fiber bundle structure, acting minimally on the fibers and trivially on the base. We also show that for any smooth, accessible isometric extension $f_{0}\\\\colon M\\\\to M$ of an Anosov diffeomorphism of a nilmanifold, subject to a spectral bunching condition, any $f\\\\in \\\\textrm{Diff}^{\\\\infty }(M)$ sufficiently $C^{1}$-close to $f_{0}$ has centralizer a Lie group. If the dimension of this Lie group equals the dimension of the fiber, then $f$ is a principal fiber bundle morphism covering an Anosov diffeomorphism. Using the results of this paper, we classify the centralizer of any partially hyperbolic diffeomorphism of a $3$-dimensional, nontoral nilmanifold: either the centralizer is virtually trivial, or the diffeomorphism is an isometric extension of an Anosov diffeomorphism, and the centralizer is virtually ${{\\\\mathbb{Z}}}\\\\times{{\\\\mathbb{T}}}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了关于光滑差分形的中心子的几个刚性结果,并集中讨论了两个系列的例子:具有反式中心子的差分形,以及无芒物的阿诺索夫差分形的等距扩展的扰动。我们对所有具有传递中心性的光滑差分形进行了分类:它们正是保留主纤维束结构的映射,对纤维的作用最小,对基底的作用微不足道。我们还证明,对于任何平滑的、可访问的等距扩展 $f_{0}\colon M\to M$ 的无芒点的阿诺索夫差分形变,在满足谱束化条件的前提下,任何 $f\in \textrm{Diff}^\{infty }(M)$ 足够接近 $C^{1}$ 的 $f_{0}$ 的中心子都是一个李群。如果这个李群的维数等于纤维的维数,那么 $f$ 就是一个覆盖阿诺索夫差分变形的主纤维束变形。利用本文的结果,我们对任何 3$维非口角无芒形的部分双曲衍射的中心子进行了分类:要么中心子实际上是微不足道的,要么衍射是阿诺索夫衍射的等距扩展,并且中心子实际上是 ${{mathbb{Z}}} 的 ${{mathbb{T}}}倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Transitive Centralizer and Fibered Partially Hyperbolic Systems
We prove several rigidity results about the centralizer of a smooth diffeomorphism, concentrating on two families of examples: diffeomorphisms with transitive centralizer, and perturbations of isometric extensions of Anosov diffeomorphisms of nilmanifolds. We classify all smooth diffeomorphisms with transitive centralizer: they are exactly the maps that preserve a principal fiber bundle structure, acting minimally on the fibers and trivially on the base. We also show that for any smooth, accessible isometric extension $f_{0}\colon M\to M$ of an Anosov diffeomorphism of a nilmanifold, subject to a spectral bunching condition, any $f\in \textrm{Diff}^{\infty }(M)$ sufficiently $C^{1}$-close to $f_{0}$ has centralizer a Lie group. If the dimension of this Lie group equals the dimension of the fiber, then $f$ is a principal fiber bundle morphism covering an Anosov diffeomorphism. Using the results of this paper, we classify the centralizer of any partially hyperbolic diffeomorphism of a $3$-dimensional, nontoral nilmanifold: either the centralizer is virtually trivial, or the diffeomorphism is an isometric extension of an Anosov diffeomorphism, and the centralizer is virtually ${{\mathbb{Z}}}\times{{\mathbb{T}}}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信