系统搜索大参数值标准图中的稳定小岛

Alexandre R. Nieto, Rubén Capeáns, Miguel A. F. Sanjuán
{"title":"系统搜索大参数值标准图中的稳定小岛","authors":"Alexandre R. Nieto, Rubén Capeáns, Miguel A. F. Sanjuán","doi":"arxiv-2404.12027","DOIUrl":null,"url":null,"abstract":"In the seminal paper (Phys. Rep. 52, 263, 1979), Boris Chirikov showed that\nthe standard map does not exhibit a boundary to chaos, but rather that there\nare small islands (islets) of stability for arbitrarily large values of the\nnonlinear perturbation. In this context, he established that the area of the\nislets in the phase space and the range of parameter values where they exist\nshould decay following power laws with exponents -2 and -1, respectively. In\nthis paper, we carry out a systematic numerical search for islets of stability\nand we show that the power laws predicted by Chirikov hold. Furthermore, we use\nhigh-resolution 3D islets to reveal that the islets volume decays following a\nsimilar power law with exponent -3.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic search for islets of stability in the standard map for large parameter values\",\"authors\":\"Alexandre R. Nieto, Rubén Capeáns, Miguel A. F. Sanjuán\",\"doi\":\"arxiv-2404.12027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the seminal paper (Phys. Rep. 52, 263, 1979), Boris Chirikov showed that\\nthe standard map does not exhibit a boundary to chaos, but rather that there\\nare small islands (islets) of stability for arbitrarily large values of the\\nnonlinear perturbation. In this context, he established that the area of the\\nislets in the phase space and the range of parameter values where they exist\\nshould decay following power laws with exponents -2 and -1, respectively. In\\nthis paper, we carry out a systematic numerical search for islets of stability\\nand we show that the power laws predicted by Chirikov hold. Furthermore, we use\\nhigh-resolution 3D islets to reveal that the islets volume decays following a\\nsimilar power law with exponent -3.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.12027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.12027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在开创性论文(《物理报告》52, 263, 1979 年)中,鲍里斯-奇里科夫(Boris Chirikov)指出,标准图并没有显示出混沌边界,相反,在当时的非线性扰动的任意大值下,存在着稳定的小岛(islets)。在这种情况下,他确定了相空间中小岛的面积以及小岛存在的参数值范围应分别按照指数为-2 和-1 的幂律衰减。在本文中,我们对稳定小岛进行了系统的数值搜索,结果表明奇里科夫预测的幂律成立。此外,我们利用高分辨率的三维小岛揭示了小岛体积的衰减遵循指数为-3的类似幂律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic search for islets of stability in the standard map for large parameter values
In the seminal paper (Phys. Rep. 52, 263, 1979), Boris Chirikov showed that the standard map does not exhibit a boundary to chaos, but rather that there are small islands (islets) of stability for arbitrarily large values of the nonlinear perturbation. In this context, he established that the area of the islets in the phase space and the range of parameter values where they exist should decay following power laws with exponents -2 and -1, respectively. In this paper, we carry out a systematic numerical search for islets of stability and we show that the power laws predicted by Chirikov hold. Furthermore, we use high-resolution 3D islets to reveal that the islets volume decays following a similar power law with exponent -3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信