{"title":"单位盘中某些双曲型度量的失真估计和度量尺寸","authors":"Siji Wei, Yingqing Xiao","doi":"10.1007/s00025-024-02170-y","DOIUrl":null,"url":null,"abstract":"<p>The article considers two properties of several metrics defined in the unit disk <span>\\(\\Delta \\)</span> in <span>\\({\\mathbb {C}}\\)</span>. One is the Lipschitz constant of Möbius transformation preserving <span>\\(\\Delta \\)</span>, especially the <i>t</i>-metric case and the Hilbert metric case. In particular, we confirm a conjecture posed by Rainio and Vuorinen (Results Math 77:71–80, 2022) about <i>t</i>-metric, and disprove the conjecture posed by Rainio and Vuorinen (Stud Sci Math Hung 60:175–191, 2023) about Hilbert metric. Moreover, we show that the metric dimensions of metric spaces <span>\\((\\Delta , d)\\)</span>, where <i>d</i> includes hyperbolic metric, <i>j</i>-metric, Hilbert metric and <i>t</i>-metric, are 3. Thus, we solve the open question posed by Bau and Beardon (Comput Methods Funct Theory 13:295–305, 2013) about these metrics in the unit disk case.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distortion Estimations and Metric Dimensions of Some Hyperbolic-Type Metrics in the Unit Disk\",\"authors\":\"Siji Wei, Yingqing Xiao\",\"doi\":\"10.1007/s00025-024-02170-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article considers two properties of several metrics defined in the unit disk <span>\\\\(\\\\Delta \\\\)</span> in <span>\\\\({\\\\mathbb {C}}\\\\)</span>. One is the Lipschitz constant of Möbius transformation preserving <span>\\\\(\\\\Delta \\\\)</span>, especially the <i>t</i>-metric case and the Hilbert metric case. In particular, we confirm a conjecture posed by Rainio and Vuorinen (Results Math 77:71–80, 2022) about <i>t</i>-metric, and disprove the conjecture posed by Rainio and Vuorinen (Stud Sci Math Hung 60:175–191, 2023) about Hilbert metric. Moreover, we show that the metric dimensions of metric spaces <span>\\\\((\\\\Delta , d)\\\\)</span>, where <i>d</i> includes hyperbolic metric, <i>j</i>-metric, Hilbert metric and <i>t</i>-metric, are 3. Thus, we solve the open question posed by Bau and Beardon (Comput Methods Funct Theory 13:295–305, 2013) about these metrics in the unit disk case.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02170-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02170-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
文章考虑了在\({\mathbb {C}}\)中定义在单位盘\(\Delta \)中的几个度量的两个性质。一个是保存 \(\Delta \)的莫比乌斯变换的 Lipschitz 常量,特别是 t 度量情况和希尔伯特度量情况。特别是,我们证实了 Rainio 和 Vuorinen (Results Math 77:71-80, 2022) 提出的关于 t 度量的猜想,反证了 Rainio 和 Vuorinen (Stud Sci Math Hung 60:175-191, 2023) 提出的关于希尔伯特度量的猜想。此外,我们证明了度量空间 \((\Delta , d)\)的度量维数是 3,其中 d 包括双曲度量、j 度量、希尔伯特度量和 t 度量。因此,我们解决了鲍和比尔登(Comput Methods Funct Theory 13:295-305, 2013)提出的关于单位盘情况下这些度量的未决问题。
Distortion Estimations and Metric Dimensions of Some Hyperbolic-Type Metrics in the Unit Disk
The article considers two properties of several metrics defined in the unit disk \(\Delta \) in \({\mathbb {C}}\). One is the Lipschitz constant of Möbius transformation preserving \(\Delta \), especially the t-metric case and the Hilbert metric case. In particular, we confirm a conjecture posed by Rainio and Vuorinen (Results Math 77:71–80, 2022) about t-metric, and disprove the conjecture posed by Rainio and Vuorinen (Stud Sci Math Hung 60:175–191, 2023) about Hilbert metric. Moreover, we show that the metric dimensions of metric spaces \((\Delta , d)\), where d includes hyperbolic metric, j-metric, Hilbert metric and t-metric, are 3. Thus, we solve the open question posed by Bau and Beardon (Comput Methods Funct Theory 13:295–305, 2013) about these metrics in the unit disk case.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.