利用机器学习预测光伏电站的日发电量

IF 2.3 4区 工程技术 Q3 ENERGY & FUELS
Bharat Girdhani, Meena Agrawal
{"title":"利用机器学习预测光伏电站的日发电量","authors":"Bharat Girdhani, Meena Agrawal","doi":"10.1080/15567036.2024.2341975","DOIUrl":null,"url":null,"abstract":"The energy crisis and global warming are the two significant factors that have led to the accelerated development of PV power plants. Accurate prediction of PV plant power output is crucial to enha...","PeriodicalId":11563,"journal":{"name":"Energy Sources Part A-recovery Utilization and Environmental Effects","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of daily photovoltaic plant energy output using machine learning\",\"authors\":\"Bharat Girdhani, Meena Agrawal\",\"doi\":\"10.1080/15567036.2024.2341975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy crisis and global warming are the two significant factors that have led to the accelerated development of PV power plants. Accurate prediction of PV plant power output is crucial to enha...\",\"PeriodicalId\":11563,\"journal\":{\"name\":\"Energy Sources Part A-recovery Utilization and Environmental Effects\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Sources Part A-recovery Utilization and Environmental Effects\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567036.2024.2341975\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Sources Part A-recovery Utilization and Environmental Effects","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567036.2024.2341975","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

能源危机和全球变暖是导致光伏电站加速发展的两个重要因素。准确预测光伏电站的发电量对确保能源安全至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of daily photovoltaic plant energy output using machine learning
The energy crisis and global warming are the two significant factors that have led to the accelerated development of PV power plants. Accurate prediction of PV plant power output is crucial to enha...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
6.90%
发文量
488
审稿时长
1.7 months
期刊介绍: Energy Sources Part A: Recovery, Utilization, and Environmental Effects aims to investigate resolutions for the continuing increase in worldwide demand for energy, the diminishing accessibility of natural energy resources, and the growing impact of energy use on the environment. You are invited to submit manuscripts that explore the technological, scientific and environmental aspects of: Coal energy sources Geothermal energy sources Natural gas Nuclear energy sources Oil shale energy sources Organic waste from energy use Petroleum Solar energy sources Tar utilization Sand utilization Wind energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信