提高快速矩阵乘法的稳定性

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Charlotte Vermeylen, Marc Van Barel
{"title":"提高快速矩阵乘法的稳定性","authors":"Charlotte Vermeylen, Marc Van Barel","doi":"10.1007/s11075-024-01806-y","DOIUrl":null,"url":null,"abstract":"<p>We implement an Augmented Lagrangian method to minimize a constrained least-squares cost function designed to find sparse polyadic decompositions with elements of bounded maximal value of matrix multiplication tensors. We use this method to obtain new decompositions and parameter families of decompositions. Using these parametrizations, faster and more stable matrix multiplication algorithms are discovered.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"87 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability improvements for fast matrix multiplication\",\"authors\":\"Charlotte Vermeylen, Marc Van Barel\",\"doi\":\"10.1007/s11075-024-01806-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We implement an Augmented Lagrangian method to minimize a constrained least-squares cost function designed to find sparse polyadic decompositions with elements of bounded maximal value of matrix multiplication tensors. We use this method to obtain new decompositions and parameter families of decompositions. Using these parametrizations, faster and more stable matrix multiplication algorithms are discovered.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01806-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01806-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们采用增量拉格朗日方法,最小化受限最小二乘成本函数,旨在找到具有矩阵乘法张量最大值有界元素的稀疏多面体分解。我们利用这种方法获得了新的分解和分解的参数族。利用这些参数化,我们发现了更快、更稳定的矩阵乘法算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability improvements for fast matrix multiplication

Stability improvements for fast matrix multiplication

We implement an Augmented Lagrangian method to minimize a constrained least-squares cost function designed to find sparse polyadic decompositions with elements of bounded maximal value of matrix multiplication tensors. We use this method to obtain new decompositions and parameter families of decompositions. Using these parametrizations, faster and more stable matrix multiplication algorithms are discovered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信