幽灵光纤光谱中的四光子混合

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
N. S. Starshinov, A. V. Belinsky, A. B. Fedotov
{"title":"幽灵光纤光谱中的四光子混合","authors":"N. S. Starshinov, A. V. Belinsky, A. B. Fedotov","doi":"10.3103/s1068335624600207","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We report an experimental implementation of linear absorption spectroscopy using a fiber source of frequency-correlated photon pairs. The object under study is illuminated by a signal beam of a photon pair entangled in frequency. Due to the tight correlation of entangled photons, the absorption spectrum of the object can be measured from the idler beam, counting coincidences in both channels. The main advantages of ghost optics are analyzed, including significant noise reduction due to detecting only paired coincidences and cutting off all single background photons, as well as the potential sensitivity of studying samples, which is especially important when working with biological objects.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-Photon Mixing in Ghost Fiber Spectroscopy\",\"authors\":\"N. S. Starshinov, A. V. Belinsky, A. B. Fedotov\",\"doi\":\"10.3103/s1068335624600207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We report an experimental implementation of linear absorption spectroscopy using a fiber source of frequency-correlated photon pairs. The object under study is illuminated by a signal beam of a photon pair entangled in frequency. Due to the tight correlation of entangled photons, the absorption spectrum of the object can be measured from the idler beam, counting coincidences in both channels. The main advantages of ghost optics are analyzed, including significant noise reduction due to detecting only paired coincidences and cutting off all single background photons, as well as the potential sensitivity of studying samples, which is especially important when working with biological objects.</p>\",\"PeriodicalId\":503,\"journal\":{\"name\":\"Bulletin of the Lebedev Physics Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Lebedev Physics Institute\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068335624600207\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3103/s1068335624600207","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们报告了一种使用频率相关光子对光纤源的线性吸收光谱实验。被研究物体由频率纠缠光子对的信号光束照射。由于纠缠光子的紧密相关性,可以通过惰光束测量物体的吸收光谱,同时计算两个通道的重合度。分析了鬼影光学的主要优势,包括由于只检测成对重合光子和切断所有单个背景光子而显著降低噪音,以及研究样品的潜在灵敏度,这在处理生物物体时尤为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Four-Photon Mixing in Ghost Fiber Spectroscopy

Four-Photon Mixing in Ghost Fiber Spectroscopy

Abstract

We report an experimental implementation of linear absorption spectroscopy using a fiber source of frequency-correlated photon pairs. The object under study is illuminated by a signal beam of a photon pair entangled in frequency. Due to the tight correlation of entangled photons, the absorption spectrum of the object can be measured from the idler beam, counting coincidences in both channels. The main advantages of ghost optics are analyzed, including significant noise reduction due to detecting only paired coincidences and cutting off all single background photons, as well as the potential sensitivity of studying samples, which is especially important when working with biological objects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Lebedev Physics Institute
Bulletin of the Lebedev Physics Institute PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
25.00%
发文量
41
审稿时长
6-12 weeks
期刊介绍: Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信