{"title":"反拉普拉斯变换的一些方法的收敛性和稳定性特征","authors":"A. V. Lebedeva, V. M. Ryabov","doi":"10.1134/s1063454124010096","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The problem of inversion of the integral Laplace transform, which belongs to the class of ill-posed problems, is considered. Integral equations are reduced to ill-conditioned systems of linear algebraic equations, in which the unknowns are either the coefficients of series expansion in special functions or approximate values of the sought original at a number of points. Various handling methods are considered, and their characteristics of accuracy and stability are indicated, which are required when choosing a handling method for solving applied problems. Quadrature inversion formulas adapted for inversion of long-term and slowly occurring processes of linear viscoelasticity were constructed. A method is proposed for deforming the integration contour in the Riemann–Mellin inversion formula, which leads the problem to the calculation of definite integrals and makes it possible to obtain estimates of the error.</p>","PeriodicalId":43418,"journal":{"name":"Vestnik St Petersburg University-Mathematics","volume":"20 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of Convergence and Stability of Some Methods for Inverting the Laplace Transform\",\"authors\":\"A. V. Lebedeva, V. M. Ryabov\",\"doi\":\"10.1134/s1063454124010096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The problem of inversion of the integral Laplace transform, which belongs to the class of ill-posed problems, is considered. Integral equations are reduced to ill-conditioned systems of linear algebraic equations, in which the unknowns are either the coefficients of series expansion in special functions or approximate values of the sought original at a number of points. Various handling methods are considered, and their characteristics of accuracy and stability are indicated, which are required when choosing a handling method for solving applied problems. Quadrature inversion formulas adapted for inversion of long-term and slowly occurring processes of linear viscoelasticity were constructed. A method is proposed for deforming the integration contour in the Riemann–Mellin inversion formula, which leads the problem to the calculation of definite integrals and makes it possible to obtain estimates of the error.</p>\",\"PeriodicalId\":43418,\"journal\":{\"name\":\"Vestnik St Petersburg University-Mathematics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik St Petersburg University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063454124010096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik St Petersburg University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1063454124010096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characteristics of Convergence and Stability of Some Methods for Inverting the Laplace Transform
Abstract
The problem of inversion of the integral Laplace transform, which belongs to the class of ill-posed problems, is considered. Integral equations are reduced to ill-conditioned systems of linear algebraic equations, in which the unknowns are either the coefficients of series expansion in special functions or approximate values of the sought original at a number of points. Various handling methods are considered, and their characteristics of accuracy and stability are indicated, which are required when choosing a handling method for solving applied problems. Quadrature inversion formulas adapted for inversion of long-term and slowly occurring processes of linear viscoelasticity were constructed. A method is proposed for deforming the integration contour in the Riemann–Mellin inversion formula, which leads the problem to the calculation of definite integrals and makes it possible to obtain estimates of the error.
期刊介绍:
Vestnik St. Petersburg University, Mathematics is a journal that publishes original contributions in all areas of fundamental and applied mathematics. It is the prime outlet for the findings of scientists from the Faculty of Mathematics and Mechanics of St. Petersburg State University. Articles of the journal cover the major areas of fundamental and applied mathematics. The following are the main subject headings: Mathematical Analysis; Higher Algebra and Numbers Theory; Higher Geometry; Differential Equations; Mathematical Physics; Computational Mathematics and Numerical Analysis; Statistical Simulation; Theoretical Cybernetics; Game Theory; Operations Research; Theory of Probability and Mathematical Statistics, and Mathematical Problems of Mechanics and Astronomy.