用于数据优化的四向量智能元启发式

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Hussam N. Fakhouri, Feras M. Awaysheh, Sadi Alawadi, Mohannad Alkhalaileh, Faten Hamad
{"title":"用于数据优化的四向量智能元启发式","authors":"Hussam N. Fakhouri, Feras M. Awaysheh, Sadi Alawadi, Mohannad Alkhalaileh, Faten Hamad","doi":"10.1007/s00607-024-01287-w","DOIUrl":null,"url":null,"abstract":"<p>Swarm intelligence (SI) algorithms represent a class of Artificial Intelligence (AI) optimization metaheuristics used for solving complex optimization problems. However, a key challenge in solving complex problems is maintaining the balance between exploration and exploitation to find the optimal global solution and avoid local minima. This paper proposes an innovative Swarm Intelligence (SI) algorithm called the Four Vector Intelligent Metaheuristic (FVIM) to address the aforementioned problem. FVIM’s search strategy is guided by four top-performing leaders within a swarm, ensuring a balanced exploration-exploitation trade-off in the search space, avoiding local minima, and mitigating low convergence issues. The efficacy of FVIM is evaluated through extensive experiments conducted over two datasets, incorporating both qualitative and quantitative statistical measurements. One dataset contains twenty-three well-known single-objective optimization functions, such as fixed-dimensional and multi-modal functions, while the other dataset comprises the CEC2017 functions. Additionally, the Wilcoxon test was computed to validate the result’s significance. The results illustrate FVIM’s effectiveness in addressing diverse optimization challenges. Moreover, FVIM has been successfully applied to tackle engineering design problems, such as weld beam and truss engineering design.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"23 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four vector intelligent metaheuristic for data optimization\",\"authors\":\"Hussam N. Fakhouri, Feras M. Awaysheh, Sadi Alawadi, Mohannad Alkhalaileh, Faten Hamad\",\"doi\":\"10.1007/s00607-024-01287-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Swarm intelligence (SI) algorithms represent a class of Artificial Intelligence (AI) optimization metaheuristics used for solving complex optimization problems. However, a key challenge in solving complex problems is maintaining the balance between exploration and exploitation to find the optimal global solution and avoid local minima. This paper proposes an innovative Swarm Intelligence (SI) algorithm called the Four Vector Intelligent Metaheuristic (FVIM) to address the aforementioned problem. FVIM’s search strategy is guided by four top-performing leaders within a swarm, ensuring a balanced exploration-exploitation trade-off in the search space, avoiding local minima, and mitigating low convergence issues. The efficacy of FVIM is evaluated through extensive experiments conducted over two datasets, incorporating both qualitative and quantitative statistical measurements. One dataset contains twenty-three well-known single-objective optimization functions, such as fixed-dimensional and multi-modal functions, while the other dataset comprises the CEC2017 functions. Additionally, the Wilcoxon test was computed to validate the result’s significance. The results illustrate FVIM’s effectiveness in addressing diverse optimization challenges. Moreover, FVIM has been successfully applied to tackle engineering design problems, such as weld beam and truss engineering design.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01287-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01287-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蜂群智能(SI)算法是一类人工智能(AI)优化元启发式算法,用于解决复杂的优化问题。然而,解决复杂问题的一个关键挑战是保持探索与利用之间的平衡,以找到最优全局解决方案并避免局部最小值。本文提出了一种名为四向量智能元启发式(FVIM)的创新型蜂群智能(SI)算法来解决上述问题。FVIM 的搜索策略由蜂群中四个表现最出色的领导者引导,确保了搜索空间中探索与开发的平衡权衡,避免了局部最小值,并缓解了收敛性低的问题。通过在两个数据集上进行的大量实验,结合定性和定量统计测量,对 FVIM 的功效进行了评估。一个数据集包含 23 个著名的单目标优化函数,如定维函数和多模式函数,另一个数据集包含 CEC2017 函数。此外,还计算了 Wilcoxon 检验,以验证结果的显著性。结果表明,FVIM 能有效解决各种优化难题。此外,FVIM 已成功应用于解决工程设计问题,如焊接梁和桁架工程设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Four vector intelligent metaheuristic for data optimization

Four vector intelligent metaheuristic for data optimization

Swarm intelligence (SI) algorithms represent a class of Artificial Intelligence (AI) optimization metaheuristics used for solving complex optimization problems. However, a key challenge in solving complex problems is maintaining the balance between exploration and exploitation to find the optimal global solution and avoid local minima. This paper proposes an innovative Swarm Intelligence (SI) algorithm called the Four Vector Intelligent Metaheuristic (FVIM) to address the aforementioned problem. FVIM’s search strategy is guided by four top-performing leaders within a swarm, ensuring a balanced exploration-exploitation trade-off in the search space, avoiding local minima, and mitigating low convergence issues. The efficacy of FVIM is evaluated through extensive experiments conducted over two datasets, incorporating both qualitative and quantitative statistical measurements. One dataset contains twenty-three well-known single-objective optimization functions, such as fixed-dimensional and multi-modal functions, while the other dataset comprises the CEC2017 functions. Additionally, the Wilcoxon test was computed to validate the result’s significance. The results illustrate FVIM’s effectiveness in addressing diverse optimization challenges. Moreover, FVIM has been successfully applied to tackle engineering design problems, such as weld beam and truss engineering design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信