Dong Zheng, Ali H. AlAteah, Ali Alsubeai, Sahar A. Mostafa
{"title":"在超高性能混凝土中将微型和纳米废玻璃与铸造废砂相结合,以提高材料性能和可持续性","authors":"Dong Zheng, Ali H. AlAteah, Ali Alsubeai, Sahar A. Mostafa","doi":"10.1515/rams-2024-0012","DOIUrl":null,"url":null,"abstract":"The utilization of waste glass with micro- and nanoparticles in ultra-high-performance concrete (UHPC) has garnered significant interest due to its potential to enhance sustainability and material performance. This study focuses on the implications of integrating microwaste glass (MG) and nanowaste glass in the presence of waste foundry sand and its impact on the properties of UHPC. The particular emphasis of the current work is on compressive strength, tensile strength, sorptivity, and microstructure. It is found that MG enhances compressive strength, decreased tensile strength, reduced sorptivity, and a more compact microstructure. The results indicate that replacing cement with 20% microglass achieves the optimal compressive strength by increasing up to 11.6% at 7 days, 9.5% at 28 days, and 10.18% at 56 days. Nanowaste glass, owing to its increased reactivity and larger surface area, accelerates calcium silicate hydrate formation and improves compressive strength. At the same time, the effective utilization of nanowaste glass improves long-term resilience with an optimum compressive strength at 1.5% replacement ratios of 17.5, 18.9, and 16% at 7, 28, and 56 days, respectively. Splitting tensile strength increased by 16% at 20% MG and 21% at 1.5% nanowaste glass, respectively. Utilizing MG and nanowaste glass in UHPC with waste foundry sand is a promising method for boosting material performance and minimizing environmental impact.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"35 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating micro- and nanowaste glass with waste foundry sand in ultra-high-performance concrete to enhance material performance and sustainability\",\"authors\":\"Dong Zheng, Ali H. AlAteah, Ali Alsubeai, Sahar A. Mostafa\",\"doi\":\"10.1515/rams-2024-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of waste glass with micro- and nanoparticles in ultra-high-performance concrete (UHPC) has garnered significant interest due to its potential to enhance sustainability and material performance. This study focuses on the implications of integrating microwaste glass (MG) and nanowaste glass in the presence of waste foundry sand and its impact on the properties of UHPC. The particular emphasis of the current work is on compressive strength, tensile strength, sorptivity, and microstructure. It is found that MG enhances compressive strength, decreased tensile strength, reduced sorptivity, and a more compact microstructure. The results indicate that replacing cement with 20% microglass achieves the optimal compressive strength by increasing up to 11.6% at 7 days, 9.5% at 28 days, and 10.18% at 56 days. Nanowaste glass, owing to its increased reactivity and larger surface area, accelerates calcium silicate hydrate formation and improves compressive strength. At the same time, the effective utilization of nanowaste glass improves long-term resilience with an optimum compressive strength at 1.5% replacement ratios of 17.5, 18.9, and 16% at 7, 28, and 56 days, respectively. Splitting tensile strength increased by 16% at 20% MG and 21% at 1.5% nanowaste glass, respectively. Utilizing MG and nanowaste glass in UHPC with waste foundry sand is a promising method for boosting material performance and minimizing environmental impact.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2024-0012\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2024-0012","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating micro- and nanowaste glass with waste foundry sand in ultra-high-performance concrete to enhance material performance and sustainability
The utilization of waste glass with micro- and nanoparticles in ultra-high-performance concrete (UHPC) has garnered significant interest due to its potential to enhance sustainability and material performance. This study focuses on the implications of integrating microwaste glass (MG) and nanowaste glass in the presence of waste foundry sand and its impact on the properties of UHPC. The particular emphasis of the current work is on compressive strength, tensile strength, sorptivity, and microstructure. It is found that MG enhances compressive strength, decreased tensile strength, reduced sorptivity, and a more compact microstructure. The results indicate that replacing cement with 20% microglass achieves the optimal compressive strength by increasing up to 11.6% at 7 days, 9.5% at 28 days, and 10.18% at 56 days. Nanowaste glass, owing to its increased reactivity and larger surface area, accelerates calcium silicate hydrate formation and improves compressive strength. At the same time, the effective utilization of nanowaste glass improves long-term resilience with an optimum compressive strength at 1.5% replacement ratios of 17.5, 18.9, and 16% at 7, 28, and 56 days, respectively. Splitting tensile strength increased by 16% at 20% MG and 21% at 1.5% nanowaste glass, respectively. Utilizing MG and nanowaste glass in UHPC with waste foundry sand is a promising method for boosting material performance and minimizing environmental impact.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.