Guoqing Xiao;Chuanghui Yin;Yuedan Chen;Mingxing Duan;Kenli Li
{"title":"在异构系统上高效利用多线程并行性实现稀疏张量收缩","authors":"Guoqing Xiao;Chuanghui Yin;Yuedan Chen;Mingxing Duan;Kenli Li","doi":"10.1109/TPDS.2024.3391254","DOIUrl":null,"url":null,"abstract":"Many fields of scientific simulation, such as chemistry and condensed matter physics, are increasingly eschewing dense tensor contraction in favor of sparse tensor contraction. In this work, we center around binary sparse tensor contraction (SpTC) which has the challenges of index matching and accumulation. To address these difficulties, we present GSpTC, an efficient element-wise SpTC framework on CPU-GPU heterogeneous systems. GSpTC first introduces a fine-grained partitioning strategy based on element-wise tensor contraction. By analyzing and selecting appropriate dimension partitioning strategies, we can efficiently utilize the multi-threading parallelism on GPUs and optimize the overall performance of GSpTC. In particular, GSpTC leverages multi-threading parallelism on GPUs for the contraction phase and merging phase, which greatly accelerates the computation phase in sparse tensor contraction computations. Furthermore, GSpTC employs parallel pipeline technology to hide the data transmission time between the host and the device, further enhancing its performance. As a result, GSpTC achieves an average performance improvement of 267% compared to the previous state-of-the-art framework Sparta.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Utilization of Multi-Threading Parallelism on Heterogeneous Systems for Sparse Tensor Contraction\",\"authors\":\"Guoqing Xiao;Chuanghui Yin;Yuedan Chen;Mingxing Duan;Kenli Li\",\"doi\":\"10.1109/TPDS.2024.3391254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many fields of scientific simulation, such as chemistry and condensed matter physics, are increasingly eschewing dense tensor contraction in favor of sparse tensor contraction. In this work, we center around binary sparse tensor contraction (SpTC) which has the challenges of index matching and accumulation. To address these difficulties, we present GSpTC, an efficient element-wise SpTC framework on CPU-GPU heterogeneous systems. GSpTC first introduces a fine-grained partitioning strategy based on element-wise tensor contraction. By analyzing and selecting appropriate dimension partitioning strategies, we can efficiently utilize the multi-threading parallelism on GPUs and optimize the overall performance of GSpTC. In particular, GSpTC leverages multi-threading parallelism on GPUs for the contraction phase and merging phase, which greatly accelerates the computation phase in sparse tensor contraction computations. Furthermore, GSpTC employs parallel pipeline technology to hide the data transmission time between the host and the device, further enhancing its performance. As a result, GSpTC achieves an average performance improvement of 267% compared to the previous state-of-the-art framework Sparta.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505825/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10505825/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Efficient Utilization of Multi-Threading Parallelism on Heterogeneous Systems for Sparse Tensor Contraction
Many fields of scientific simulation, such as chemistry and condensed matter physics, are increasingly eschewing dense tensor contraction in favor of sparse tensor contraction. In this work, we center around binary sparse tensor contraction (SpTC) which has the challenges of index matching and accumulation. To address these difficulties, we present GSpTC, an efficient element-wise SpTC framework on CPU-GPU heterogeneous systems. GSpTC first introduces a fine-grained partitioning strategy based on element-wise tensor contraction. By analyzing and selecting appropriate dimension partitioning strategies, we can efficiently utilize the multi-threading parallelism on GPUs and optimize the overall performance of GSpTC. In particular, GSpTC leverages multi-threading parallelism on GPUs for the contraction phase and merging phase, which greatly accelerates the computation phase in sparse tensor contraction computations. Furthermore, GSpTC employs parallel pipeline technology to hide the data transmission time between the host and the device, further enhancing its performance. As a result, GSpTC achieves an average performance improvement of 267% compared to the previous state-of-the-art framework Sparta.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.