用于单变量和多变量异常值功能检测的点式数据深度

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2024-04-20 DOI:10.1002/env.2851
Cristian F. Jiménez-Varón, Fouzi Harrou, Ying Sun
{"title":"用于单变量和多变量异常值功能检测的点式数据深度","authors":"Cristian F. Jiménez-Varón,&nbsp;Fouzi Harrou,&nbsp;Ying Sun","doi":"10.1002/env.2851","DOIUrl":null,"url":null,"abstract":"<p>Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This article presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise data depth for univariate and multivariate functional outlier detection\",\"authors\":\"Cristian F. Jiménez-Varón,&nbsp;Fouzi Harrou,&nbsp;Ying Sun\",\"doi\":\"10.1002/env.2851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This article presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2851\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2851","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数据深度是一种有效的工具,可用于稳健地总结功能数据的分布,并检测潜在的幅度和形状异常值。常用的功能数据深度概念,如修正带深度和极值深度,是根据每个功能观测点的点深度估算的。然而,这些技术需要为每个功能观测值计算一个单一的深度值,这可能不足以描述功能数据的分布特征和检测潜在的异常值。本文提出了一种充分利用点深度的创新方法。我们建议将点深度分布用于幅度离群值的可视化,而将成对深度之间的相关性用于形状离群值的检测。此外,我们还为相关性引入了基于引导的测试程序,以测试是否存在任何形状离群点。然后,将提出的单变量方法扩展到双变量函数数据。通过深入的模拟研究,对所提出方法的性能进行了检验,并与传统的离群值检测技术进行了比较。此外,还将所开发的方法应用于光伏系统的模拟太阳能数据集。结果表明,与传统技术相比,所提出的方法具有更优越的检测性能。这些发现将有利于工程师和从业人员通过检测未被发现的异常和离群值来监控光伏系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise data depth for univariate and multivariate functional outlier detection

Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This article presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信