Jun Liu, Ting-Ting Liu, Lan Mou, Yuwen Zhang, Xiang Chen, Qi Wang, Bin-Lu Deng, Jie Liu
{"title":"P2X7 受体:治疗合并焦虑症和抑郁症的潜在靶点","authors":"Jun Liu, Ting-Ting Liu, Lan Mou, Yuwen Zhang, Xiang Chen, Qi Wang, Bin-Lu Deng, Jie Liu","doi":"10.1007/s11302-024-10007-0","DOIUrl":null,"url":null,"abstract":"<p>In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5’-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P2X7 receptor: a potential target for treating comorbid anxiety and depression\",\"authors\":\"Jun Liu, Ting-Ting Liu, Lan Mou, Yuwen Zhang, Xiang Chen, Qi Wang, Bin-Lu Deng, Jie Liu\",\"doi\":\"10.1007/s11302-024-10007-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5’-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-024-10007-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-024-10007-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
P2X7 receptor: a potential target for treating comorbid anxiety and depression
In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5’-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.