{"title":"你只能幸运一次:认识论目标的最佳流言","authors":"Hans van Ditmarsch, Malvin Gattinger","doi":"10.1017/s0960129524000082","DOIUrl":null,"url":null,"abstract":"It is known that without synchronization via a global clock one cannot obtain common knowledge by communication. Moreover, it is folklore that without communicating higher-level information one cannot obtain arbitrary higher-order shared knowledge. Here, we make this result precise in the setting of gossip where agents make one-to-one telephone calls to share secrets: we prove that “everyone knows that everyone knows that everyone knows all secrets” is unsatisfiable in a logic of knowledge for gossiping. We also prove that, given <jats:italic>n</jats:italic> agents, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000082_inline1.png\" /> <jats:tex-math> $2n-3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> calls are optimal to reach “someone knows that everyone knows all secrets” and that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000082_inline2.png\" /> <jats:tex-math> $n - 2 + \\binom{n}{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> calls are optimal to reach “everyone knows that everyone knows all secrets.”","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"209 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"You can only be lucky once: optimal gossip for epistemic goals\",\"authors\":\"Hans van Ditmarsch, Malvin Gattinger\",\"doi\":\"10.1017/s0960129524000082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that without synchronization via a global clock one cannot obtain common knowledge by communication. Moreover, it is folklore that without communicating higher-level information one cannot obtain arbitrary higher-order shared knowledge. Here, we make this result precise in the setting of gossip where agents make one-to-one telephone calls to share secrets: we prove that “everyone knows that everyone knows that everyone knows all secrets” is unsatisfiable in a logic of knowledge for gossiping. We also prove that, given <jats:italic>n</jats:italic> agents, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000082_inline1.png\\\" /> <jats:tex-math> $2n-3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> calls are optimal to reach “someone knows that everyone knows all secrets” and that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000082_inline2.png\\\" /> <jats:tex-math> $n - 2 + \\\\binom{n}{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> calls are optimal to reach “everyone knows that everyone knows all secrets.”\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"209 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000082\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000082","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
You can only be lucky once: optimal gossip for epistemic goals
It is known that without synchronization via a global clock one cannot obtain common knowledge by communication. Moreover, it is folklore that without communicating higher-level information one cannot obtain arbitrary higher-order shared knowledge. Here, we make this result precise in the setting of gossip where agents make one-to-one telephone calls to share secrets: we prove that “everyone knows that everyone knows that everyone knows all secrets” is unsatisfiable in a logic of knowledge for gossiping. We also prove that, given n agents, $2n-3$ calls are optimal to reach “someone knows that everyone knows all secrets” and that $n - 2 + \binom{n}{2}$ calls are optimal to reach “everyone knows that everyone knows all secrets.”
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.