Behzad Najafloo, Amir Masood Rezadoust, Masoud Latifi
{"title":"连续纤维增强热固性复合材料的 Z 型印刷:工艺开发和机械性能评估","authors":"Behzad Najafloo, Amir Masood Rezadoust, Masoud Latifi","doi":"10.1177/07316844241248508","DOIUrl":null,"url":null,"abstract":"This study presents a process development and mechanical characterization for through-the-thickness yarns (TTYs) incorporated into continuous fiber-reinforced thermoset composites (CFTCs) using a 3D printing system with photopolymer curing technology. Two types of CFTCs were prepared with different ply orientations and placement of TTYs. The mechanical properties of the samples were evaluated through three-point flexural strength tests and numerical simulations. The experimental and numerical results exhibited acceptable agreement up to the first peak of the reaction force. The presence of TTYs reduced the maximum stress and altered the failure mechanisms, while improving resistance to delamination cracking. The energyabsorption capacity of the samples with TTYs was increased by 23% to 53%. However, the flexural strength of the samples decreased by 14% to 23% with the incorporation of TTYs due to the formation of small sections with low fiber content around TTYs and the concentration of von Mises stress.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"33 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z-printing of continuous fiber-reinforced thermoset composites: The process development, and mechanical properties evaluation\",\"authors\":\"Behzad Najafloo, Amir Masood Rezadoust, Masoud Latifi\",\"doi\":\"10.1177/07316844241248508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a process development and mechanical characterization for through-the-thickness yarns (TTYs) incorporated into continuous fiber-reinforced thermoset composites (CFTCs) using a 3D printing system with photopolymer curing technology. Two types of CFTCs were prepared with different ply orientations and placement of TTYs. The mechanical properties of the samples were evaluated through three-point flexural strength tests and numerical simulations. The experimental and numerical results exhibited acceptable agreement up to the first peak of the reaction force. The presence of TTYs reduced the maximum stress and altered the failure mechanisms, while improving resistance to delamination cracking. The energyabsorption capacity of the samples with TTYs was increased by 23% to 53%. However, the flexural strength of the samples decreased by 14% to 23% with the incorporation of TTYs due to the formation of small sections with low fiber content around TTYs and the concentration of von Mises stress.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241248508\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241248508","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Z-printing of continuous fiber-reinforced thermoset composites: The process development, and mechanical properties evaluation
This study presents a process development and mechanical characterization for through-the-thickness yarns (TTYs) incorporated into continuous fiber-reinforced thermoset composites (CFTCs) using a 3D printing system with photopolymer curing technology. Two types of CFTCs were prepared with different ply orientations and placement of TTYs. The mechanical properties of the samples were evaluated through three-point flexural strength tests and numerical simulations. The experimental and numerical results exhibited acceptable agreement up to the first peak of the reaction force. The presence of TTYs reduced the maximum stress and altered the failure mechanisms, while improving resistance to delamination cracking. The energyabsorption capacity of the samples with TTYs was increased by 23% to 53%. However, the flexural strength of the samples decreased by 14% to 23% with the incorporation of TTYs due to the formation of small sections with low fiber content around TTYs and the concentration of von Mises stress.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).