关于闵科夫斯基空间中的博尔苏克问题的说明

Pub Date : 2024-04-18 DOI:10.1134/S1064562424701849
A. M. Raigorodskii, A. Sagdeev
{"title":"关于闵科夫斯基空间中的博尔苏克问题的说明","authors":"A. M. Raigorodskii,&nbsp;A. Sagdeev","doi":"10.1134/S1064562424701849","DOIUrl":null,"url":null,"abstract":"<p>In 1993, Kahn and Kalai famously constructed a sequence of finite sets in <i>d</i>-dimensional Euclidean spaces that cannot be partitioned into less than <span>\\({{(1.203 \\ldots + o(1))}^{{\\sqrt d }}}\\)</span> parts of smaller diameter. Their method works not only for the Euclidean, but for all <span>\\({{\\ell }_{p}}\\)</span>-spaces as well. In this short note, we observe that the larger the value of <i>p</i>, the stronger this construction becomes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Borsuk’s Problem in Minkowski Spaces\",\"authors\":\"A. M. Raigorodskii,&nbsp;A. Sagdeev\",\"doi\":\"10.1134/S1064562424701849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1993, Kahn and Kalai famously constructed a sequence of finite sets in <i>d</i>-dimensional Euclidean spaces that cannot be partitioned into less than <span>\\\\({{(1.203 \\\\ldots + o(1))}^{{\\\\sqrt d }}}\\\\)</span> parts of smaller diameter. Their method works not only for the Euclidean, but for all <span>\\\\({{\\\\ell }_{p}}\\\\)</span>-spaces as well. In this short note, we observe that the larger the value of <i>p</i>, the stronger this construction becomes.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要1993年,卡恩和卡莱在d维欧几里得空间中构建了一个著名的有限集序列,它不能被分割成直径小于({{(1.203 \ldots + o(1))}^{{\sqrt d }}}\) 的部分。他们的方法不仅适用于欧几里得空间,也适用于所有 \({{\ell }_{p}}\)-空间。在这篇短文中,我们观察到 p 的值越大,这种构造就越强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Note on Borsuk’s Problem in Minkowski Spaces

A Note on Borsuk’s Problem in Minkowski Spaces

分享
查看原文
A Note on Borsuk’s Problem in Minkowski Spaces

In 1993, Kahn and Kalai famously constructed a sequence of finite sets in d-dimensional Euclidean spaces that cannot be partitioned into less than \({{(1.203 \ldots + o(1))}^{{\sqrt d }}}\) parts of smaller diameter. Their method works not only for the Euclidean, but for all \({{\ell }_{p}}\)-spaces as well. In this short note, we observe that the larger the value of p, the stronger this construction becomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信