{"title":"非线性变分不等式与正量程集合上的双边约束重合","authors":"A. A. Kovalevsky","doi":"10.1134/S1064562424701813","DOIUrl":null,"url":null,"abstract":"<p>We consider variational inequalities with invertible operators <span>\\({{\\mathcal{A}}_{s}}{\\text{:}}~\\,W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right),\\)</span> <span>\\(s \\in \\mathbb{N},\\)</span> in divergence form and with constraint set <span>\\(V = \\{ {v} \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right){\\text{: }}\\varphi \\leqslant {v} \\leqslant \\psi ~\\)</span> a.e. in <span>\\({{\\Omega }}\\} ,\\)</span> where <span>\\({{\\Omega }}\\)</span> is a nonempty bounded open set in <span>\\({{\\mathbb{R}}^{n}}\\)</span> <span>\\(\\left( {n \\geqslant 2} \\right)\\)</span>, <i>p</i> > 1, and <span>\\(\\varphi ,\\psi {{:\\;\\Omega }} \\to \\bar {\\mathbb{R}}\\)</span> are measurable functions. Under the assumptions that the operators <span>\\({{\\mathcal{A}}_{s}}\\)</span> <i>G-</i>converge to an invertible operator <span>\\(\\mathcal{A}{\\text{: }}W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span>, <span>\\({\\text{int}}\\left\\{ {\\varphi = \\psi } \\right\\} \\ne \\varnothing ,\\)</span> <span>\\({\\text{meas}}\\left( {\\partial \\left\\{ {\\varphi = \\psi } \\right\\} \\cap {{\\Omega }}} \\right)\\)</span> = 0, and there exist functions <span>\\(\\bar {\\varphi },\\bar {\\psi } \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> such that <span>\\(\\varphi \\leqslant \\overline {\\varphi ~} \\leqslant \\bar {\\psi } \\leqslant \\psi \\)</span> a.e. in <span>\\({{\\Omega }}\\)</span> and <span>\\({\\text{meas}}\\left( {\\left\\{ {\\varphi \\ne \\psi } \\right\\}{{\\backslash }}\\left\\{ {\\bar {\\varphi } \\ne \\bar {\\psi }} \\right\\}} \\right) = 0,\\)</span> we establish that the solutions <i>u</i><sub><i>s</i></sub> of the variational inequalities converge weakly in <span>\\(W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> to the solution <i>u</i> of a similar variational inequality with the operator <span>\\(\\mathcal{A}\\)</span> and the constraint set <i>V</i>. The fundamental difference of the considered case from the previously studied one in which <span>\\({\\text{meas}}\\left\\{ {\\varphi = \\psi } \\right\\} = 0\\)</span> is that, in general, the functionals <span>\\({{\\mathcal{A}}_{s}}{{u}_{s}}\\)</span> do not converge to <span>\\(\\mathcal{A}u\\)</span> even weakly in <span>\\({{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span> and the energy integrals <span>\\(\\langle {{\\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\\rangle \\)</span> do not converge to <span>\\(\\langle \\mathcal{A}u,u\\rangle \\)</span>.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"109 1","pages":"62 - 65"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure\",\"authors\":\"A. A. Kovalevsky\",\"doi\":\"10.1134/S1064562424701813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider variational inequalities with invertible operators <span>\\\\({{\\\\mathcal{A}}_{s}}{\\\\text{:}}~\\\\,W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right) \\\\to {{W}^{{ - 1,p'}}}\\\\left( {{\\\\Omega }} \\\\right),\\\\)</span> <span>\\\\(s \\\\in \\\\mathbb{N},\\\\)</span> in divergence form and with constraint set <span>\\\\(V = \\\\{ {v} \\\\in W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right){\\\\text{: }}\\\\varphi \\\\leqslant {v} \\\\leqslant \\\\psi ~\\\\)</span> a.e. in <span>\\\\({{\\\\Omega }}\\\\} ,\\\\)</span> where <span>\\\\({{\\\\Omega }}\\\\)</span> is a nonempty bounded open set in <span>\\\\({{\\\\mathbb{R}}^{n}}\\\\)</span> <span>\\\\(\\\\left( {n \\\\geqslant 2} \\\\right)\\\\)</span>, <i>p</i> > 1, and <span>\\\\(\\\\varphi ,\\\\psi {{:\\\\;\\\\Omega }} \\\\to \\\\bar {\\\\mathbb{R}}\\\\)</span> are measurable functions. Under the assumptions that the operators <span>\\\\({{\\\\mathcal{A}}_{s}}\\\\)</span> <i>G-</i>converge to an invertible operator <span>\\\\(\\\\mathcal{A}{\\\\text{: }}W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right) \\\\to {{W}^{{ - 1,p'}}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span>, <span>\\\\({\\\\text{int}}\\\\left\\\\{ {\\\\varphi = \\\\psi } \\\\right\\\\} \\\\ne \\\\varnothing ,\\\\)</span> <span>\\\\({\\\\text{meas}}\\\\left( {\\\\partial \\\\left\\\\{ {\\\\varphi = \\\\psi } \\\\right\\\\} \\\\cap {{\\\\Omega }}} \\\\right)\\\\)</span> = 0, and there exist functions <span>\\\\(\\\\bar {\\\\varphi },\\\\bar {\\\\psi } \\\\in W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span> such that <span>\\\\(\\\\varphi \\\\leqslant \\\\overline {\\\\varphi ~} \\\\leqslant \\\\bar {\\\\psi } \\\\leqslant \\\\psi \\\\)</span> a.e. in <span>\\\\({{\\\\Omega }}\\\\)</span> and <span>\\\\({\\\\text{meas}}\\\\left( {\\\\left\\\\{ {\\\\varphi \\\\ne \\\\psi } \\\\right\\\\}{{\\\\backslash }}\\\\left\\\\{ {\\\\bar {\\\\varphi } \\\\ne \\\\bar {\\\\psi }} \\\\right\\\\}} \\\\right) = 0,\\\\)</span> we establish that the solutions <i>u</i><sub><i>s</i></sub> of the variational inequalities converge weakly in <span>\\\\(W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span> to the solution <i>u</i> of a similar variational inequality with the operator <span>\\\\(\\\\mathcal{A}\\\\)</span> and the constraint set <i>V</i>. The fundamental difference of the considered case from the previously studied one in which <span>\\\\({\\\\text{meas}}\\\\left\\\\{ {\\\\varphi = \\\\psi } \\\\right\\\\} = 0\\\\)</span> is that, in general, the functionals <span>\\\\({{\\\\mathcal{A}}_{s}}{{u}_{s}}\\\\)</span> do not converge to <span>\\\\(\\\\mathcal{A}u\\\\)</span> even weakly in <span>\\\\({{W}^{{ - 1,p'}}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span> and the energy integrals <span>\\\\(\\\\langle {{\\\\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\\\\rangle \\\\)</span> do not converge to <span>\\\\(\\\\langle \\\\mathcal{A}u,u\\\\rangle \\\\)</span>.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"109 1\",\"pages\":\"62 - 65\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701813\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701813","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Abstract We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{text{:}}~\,W_{0}^{{1,p}}}left( {{Omega }} \right) \to {{W}^{ - 1,p'}}}left( {{Omega }} \right),\)\(s在mathbb{N},\)中的发散形式和约束集\(V = \{v} \ in W_{0}^{1,p}}left( {{\Omega }} \right){\text{:}}varphi \leqslant {v} \leqslant \psi ~\) a.e..in \({{\Omega }}} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\) \(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {text{:Omega } \to bar\{mathbb{R}}\) 都是可测函数。假设算子 \({{mathcal{A}}_{s}}\) G-converge 到一个可逆算子 \(\mathcal{A}}\{text{:W_{0}^{{1,p}}}left( {{\Omega }} \right) \to {{W}^{ -1,p'}}}left( {{\Omega }} \right)\), (({ \text{int}}}left\{ {\varphi = \psi } \right\} \ne \emptyset 、\)({\text{meas}}左({\partial \left\{ {\varphi = \psi } \right} \cap {\Omega }} \right))= 0,并且存在函数(\bar {\varphi },\bar {\psi })。\in W_{0}^{1,p}}left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~})\(leqslant) (bar {\psi }\a.e. in \({{\Omega }}\) and \({\text{meas}}left( {\left\{ {{varphi \ne\psi } })\right}({{backslash}}) (left) ({\bar {\varphi }\ne\bar {\psi }\Rright}\right) = 0,()我们确定变分不等式的解 us 在 \(W_{0}^{1,p}}\left( {{\Omega }} \right)\)中弱收敛于具有算子 \(\mathcal{A}\)和约束集 V 的类似变分不等式的解 u。所考虑的情况与之前研究的情况({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\ )的根本区别在于,一般来说,函数 \({{\mathcal{A}}_{s}}{{u}_{s}}\) 不会收敛到 \({{W}^{ - 1、p'}}}left({{\Omega}}\right)\),能量积分 \(angle {{mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \)也不会收敛到 \(\langle \mathcal{A}}u,u\rangle \)。
Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure
We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{\text{:}}~\,W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right),\)\(s \in \mathbb{N},\) in divergence form and with constraint set \(V = \{ {v} \in W_{0}^{{1,p}}\left( {{\Omega }} \right){\text{: }}\varphi \leqslant {v} \leqslant \psi ~\) a.e. in \({{\Omega }}\} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\)\(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {{:\;\Omega }} \to \bar {\mathbb{R}}\) are measurable functions. Under the assumptions that the operators \({{\mathcal{A}}_{s}}\)G-converge to an invertible operator \(\mathcal{A}{\text{: }}W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\), \({\text{int}}\left\{ {\varphi = \psi } \right\} \ne \varnothing ,\)\({\text{meas}}\left( {\partial \left\{ {\varphi = \psi } \right\} \cap {{\Omega }}} \right)\) = 0, and there exist functions \(\bar {\varphi },\bar {\psi } \in W_{0}^{{1,p}}\left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~} \leqslant \bar {\psi } \leqslant \psi \) a.e. in \({{\Omega }}\) and \({\text{meas}}\left( {\left\{ {\varphi \ne \psi } \right\}{{\backslash }}\left\{ {\bar {\varphi } \ne \bar {\psi }} \right\}} \right) = 0,\) we establish that the solutions us of the variational inequalities converge weakly in \(W_{0}^{{1,p}}\left( {{\Omega }} \right)\) to the solution u of a similar variational inequality with the operator \(\mathcal{A}\) and the constraint set V. The fundamental difference of the considered case from the previously studied one in which \({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\) is that, in general, the functionals \({{\mathcal{A}}_{s}}{{u}_{s}}\) do not converge to \(\mathcal{A}u\) even weakly in \({{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\) and the energy integrals \(\langle {{\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \) do not converge to \(\langle \mathcal{A}u,u\rangle \).
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.