非线性变分不等式与正量程集合上的双边约束重合

Pub Date : 2024-04-18 DOI:10.1134/S1064562424701813
A. A. Kovalevsky
{"title":"非线性变分不等式与正量程集合上的双边约束重合","authors":"A. A. Kovalevsky","doi":"10.1134/S1064562424701813","DOIUrl":null,"url":null,"abstract":"<p>We consider variational inequalities with invertible operators <span>\\({{\\mathcal{A}}_{s}}{\\text{:}}~\\,W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right),\\)</span> <span>\\(s \\in \\mathbb{N},\\)</span> in divergence form and with constraint set <span>\\(V = \\{ {v} \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right){\\text{: }}\\varphi \\leqslant {v} \\leqslant \\psi ~\\)</span> a.e. in <span>\\({{\\Omega }}\\} ,\\)</span> where <span>\\({{\\Omega }}\\)</span> is a nonempty bounded open set in <span>\\({{\\mathbb{R}}^{n}}\\)</span> <span>\\(\\left( {n \\geqslant 2} \\right)\\)</span>, <i>p</i> &gt; 1, and <span>\\(\\varphi ,\\psi {{:\\;\\Omega }} \\to \\bar {\\mathbb{R}}\\)</span> are measurable functions. Under the assumptions that the operators <span>\\({{\\mathcal{A}}_{s}}\\)</span> <i>G-</i>converge to an invertible operator <span>\\(\\mathcal{A}{\\text{: }}W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span>, <span>\\({\\text{int}}\\left\\{ {\\varphi = \\psi } \\right\\} \\ne \\varnothing ,\\)</span> <span>\\({\\text{meas}}\\left( {\\partial \\left\\{ {\\varphi = \\psi } \\right\\} \\cap {{\\Omega }}} \\right)\\)</span> = 0, and there exist functions <span>\\(\\bar {\\varphi },\\bar {\\psi } \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> such that <span>\\(\\varphi \\leqslant \\overline {\\varphi ~} \\leqslant \\bar {\\psi } \\leqslant \\psi \\)</span> a.e. in <span>\\({{\\Omega }}\\)</span> and <span>\\({\\text{meas}}\\left( {\\left\\{ {\\varphi \\ne \\psi } \\right\\}{{\\backslash }}\\left\\{ {\\bar {\\varphi } \\ne \\bar {\\psi }} \\right\\}} \\right) = 0,\\)</span> we establish that the solutions <i>u</i><sub><i>s</i></sub> of the variational inequalities converge weakly in <span>\\(W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> to the solution <i>u</i> of a similar variational inequality with the operator <span>\\(\\mathcal{A}\\)</span> and the constraint set <i>V</i>. The fundamental difference of the considered case from the previously studied one in which <span>\\({\\text{meas}}\\left\\{ {\\varphi = \\psi } \\right\\} = 0\\)</span> is that, in general, the functionals <span>\\({{\\mathcal{A}}_{s}}{{u}_{s}}\\)</span> do not converge to <span>\\(\\mathcal{A}u\\)</span> even weakly in <span>\\({{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span> and the energy integrals <span>\\(\\langle {{\\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\\rangle \\)</span> do not converge to <span>\\(\\langle \\mathcal{A}u,u\\rangle \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure\",\"authors\":\"A. A. Kovalevsky\",\"doi\":\"10.1134/S1064562424701813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider variational inequalities with invertible operators <span>\\\\({{\\\\mathcal{A}}_{s}}{\\\\text{:}}~\\\\,W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right) \\\\to {{W}^{{ - 1,p'}}}\\\\left( {{\\\\Omega }} \\\\right),\\\\)</span> <span>\\\\(s \\\\in \\\\mathbb{N},\\\\)</span> in divergence form and with constraint set <span>\\\\(V = \\\\{ {v} \\\\in W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right){\\\\text{: }}\\\\varphi \\\\leqslant {v} \\\\leqslant \\\\psi ~\\\\)</span> a.e. in <span>\\\\({{\\\\Omega }}\\\\} ,\\\\)</span> where <span>\\\\({{\\\\Omega }}\\\\)</span> is a nonempty bounded open set in <span>\\\\({{\\\\mathbb{R}}^{n}}\\\\)</span> <span>\\\\(\\\\left( {n \\\\geqslant 2} \\\\right)\\\\)</span>, <i>p</i> &gt; 1, and <span>\\\\(\\\\varphi ,\\\\psi {{:\\\\;\\\\Omega }} \\\\to \\\\bar {\\\\mathbb{R}}\\\\)</span> are measurable functions. Under the assumptions that the operators <span>\\\\({{\\\\mathcal{A}}_{s}}\\\\)</span> <i>G-</i>converge to an invertible operator <span>\\\\(\\\\mathcal{A}{\\\\text{: }}W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right) \\\\to {{W}^{{ - 1,p'}}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span>, <span>\\\\({\\\\text{int}}\\\\left\\\\{ {\\\\varphi = \\\\psi } \\\\right\\\\} \\\\ne \\\\varnothing ,\\\\)</span> <span>\\\\({\\\\text{meas}}\\\\left( {\\\\partial \\\\left\\\\{ {\\\\varphi = \\\\psi } \\\\right\\\\} \\\\cap {{\\\\Omega }}} \\\\right)\\\\)</span> = 0, and there exist functions <span>\\\\(\\\\bar {\\\\varphi },\\\\bar {\\\\psi } \\\\in W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span> such that <span>\\\\(\\\\varphi \\\\leqslant \\\\overline {\\\\varphi ~} \\\\leqslant \\\\bar {\\\\psi } \\\\leqslant \\\\psi \\\\)</span> a.e. in <span>\\\\({{\\\\Omega }}\\\\)</span> and <span>\\\\({\\\\text{meas}}\\\\left( {\\\\left\\\\{ {\\\\varphi \\\\ne \\\\psi } \\\\right\\\\}{{\\\\backslash }}\\\\left\\\\{ {\\\\bar {\\\\varphi } \\\\ne \\\\bar {\\\\psi }} \\\\right\\\\}} \\\\right) = 0,\\\\)</span> we establish that the solutions <i>u</i><sub><i>s</i></sub> of the variational inequalities converge weakly in <span>\\\\(W_{0}^{{1,p}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span> to the solution <i>u</i> of a similar variational inequality with the operator <span>\\\\(\\\\mathcal{A}\\\\)</span> and the constraint set <i>V</i>. The fundamental difference of the considered case from the previously studied one in which <span>\\\\({\\\\text{meas}}\\\\left\\\\{ {\\\\varphi = \\\\psi } \\\\right\\\\} = 0\\\\)</span> is that, in general, the functionals <span>\\\\({{\\\\mathcal{A}}_{s}}{{u}_{s}}\\\\)</span> do not converge to <span>\\\\(\\\\mathcal{A}u\\\\)</span> even weakly in <span>\\\\({{W}^{{ - 1,p'}}}\\\\left( {{\\\\Omega }} \\\\right)\\\\)</span> and the energy integrals <span>\\\\(\\\\langle {{\\\\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\\\\rangle \\\\)</span> do not converge to <span>\\\\(\\\\langle \\\\mathcal{A}u,u\\\\rangle \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{text{:}}~\,W_{0}^{{1,p}}}left( {{Omega }} \right) \to {{W}^{ - 1,p'}}}left( {{Omega }} \right),\)\(s在mathbb{N},\)中的发散形式和约束集\(V = \{v} \ in W_{0}^{1,p}}left( {{\Omega }} \right){\text{:}}varphi \leqslant {v} \leqslant \psi ~\) a.e..in \({{\Omega }}} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\) \(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {text{:Omega } \to bar\{mathbb{R}}\) 都是可测函数。假设算子 \({{mathcal{A}}_{s}}\) G-converge 到一个可逆算子 \(\mathcal{A}}\{text{:W_{0}^{{1,p}}}left( {{\Omega }} \right) \to {{W}^{ -1,p'}}}left( {{\Omega }} \right)\), (({ \text{int}}}left\{ {\varphi = \psi } \right\} \ne \emptyset 、\)({\text{meas}}左({\partial \left\{ {\varphi = \psi } \right} \cap {\Omega }} \right))= 0,并且存在函数(\bar {\varphi },\bar {\psi })。\in W_{0}^{1,p}}left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~})\(leqslant) (bar {\psi }\a.e. in \({{\Omega }}\) and \({\text{meas}}left( {\left\{ {{varphi \ne\psi } })\right}({{backslash}}) (left) ({\bar {\varphi }\ne\bar {\psi }\Rright}\right) = 0,()我们确定变分不等式的解 us 在 \(W_{0}^{1,p}}\left( {{\Omega }} \right)\)中弱收敛于具有算子 \(\mathcal{A}\)和约束集 V 的类似变分不等式的解 u。所考虑的情况与之前研究的情况({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\ )的根本区别在于,一般来说,函数 \({{\mathcal{A}}_{s}}{{u}_{s}}\) 不会收敛到 \({{W}^{ - 1、p'}}}left({{\Omega}}\right)\),能量积分 \(angle {{mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \)也不会收敛到 \(\langle \mathcal{A}}u,u\rangle \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure

We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{\text{:}}~\,W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right),\) \(s \in \mathbb{N},\) in divergence form and with constraint set \(V = \{ {v} \in W_{0}^{{1,p}}\left( {{\Omega }} \right){\text{: }}\varphi \leqslant {v} \leqslant \psi ~\) a.e. in \({{\Omega }}\} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\) \(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {{:\;\Omega }} \to \bar {\mathbb{R}}\) are measurable functions. Under the assumptions that the operators \({{\mathcal{A}}_{s}}\) G-converge to an invertible operator \(\mathcal{A}{\text{: }}W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\), \({\text{int}}\left\{ {\varphi = \psi } \right\} \ne \varnothing ,\) \({\text{meas}}\left( {\partial \left\{ {\varphi = \psi } \right\} \cap {{\Omega }}} \right)\) = 0, and there exist functions \(\bar {\varphi },\bar {\psi } \in W_{0}^{{1,p}}\left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~} \leqslant \bar {\psi } \leqslant \psi \) a.e. in \({{\Omega }}\) and \({\text{meas}}\left( {\left\{ {\varphi \ne \psi } \right\}{{\backslash }}\left\{ {\bar {\varphi } \ne \bar {\psi }} \right\}} \right) = 0,\) we establish that the solutions us of the variational inequalities converge weakly in \(W_{0}^{{1,p}}\left( {{\Omega }} \right)\) to the solution u of a similar variational inequality with the operator \(\mathcal{A}\) and the constraint set V. The fundamental difference of the considered case from the previously studied one in which \({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\) is that, in general, the functionals \({{\mathcal{A}}_{s}}{{u}_{s}}\) do not converge to \(\mathcal{A}u\) even weakly in \({{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\) and the energy integrals \(\langle {{\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \) do not converge to \(\langle \mathcal{A}u,u\rangle \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信