具有统一规范的索波列夫空间中函数的精确估算

Pub Date : 2024-04-18 DOI:10.1134/S1064562424701862
D. D. Kazimirov, I. A. Sheipak
{"title":"具有统一规范的索波列夫空间中函数的精确估算","authors":"D. D. Kazimirov,&nbsp;I. A. Sheipak","doi":"10.1134/S1064562424701862","DOIUrl":null,"url":null,"abstract":"<p>For functions from the Sobolev space <span>\\(\\overset{\\circ}{W}{} _{\\infty }^{n}[0;1]\\)</span> and an arbitrary point <span>\\(a \\in (0;1)\\)</span>, the best estimates are obtained in the inequality <span>\\({\\text{|}}f(a){\\text{|}} \\leqslant {{A}_{{n,0,\\infty }}}(a)\\, \\cdot \\,{\\text{||}}{{f}^{{(n)}}}{\\text{|}}{{{\\text{|}}}_{{{{L}_{\\infty }}[0;1]}}}\\)</span>. The connection of these estimates with the best approximations of splines of a special type by polynomials in <span>\\({{L}_{1}}[0;1]\\)</span> and with the Peano kernel is established. Exact constants of the embedding of the space <span>\\(\\overset{\\circ}{W}{}_{\\infty }^{n}[0;1]\\)</span> in <span>\\({{L}_{\\infty }}[0;1]\\)</span> are found.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Estimates of Functions in Sobolev Spaces with Uniform Norm\",\"authors\":\"D. D. Kazimirov,&nbsp;I. A. Sheipak\",\"doi\":\"10.1134/S1064562424701862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For functions from the Sobolev space <span>\\\\(\\\\overset{\\\\circ}{W}{} _{\\\\infty }^{n}[0;1]\\\\)</span> and an arbitrary point <span>\\\\(a \\\\in (0;1)\\\\)</span>, the best estimates are obtained in the inequality <span>\\\\({\\\\text{|}}f(a){\\\\text{|}} \\\\leqslant {{A}_{{n,0,\\\\infty }}}(a)\\\\, \\\\cdot \\\\,{\\\\text{||}}{{f}^{{(n)}}}{\\\\text{|}}{{{\\\\text{|}}}_{{{{L}_{\\\\infty }}[0;1]}}}\\\\)</span>. The connection of these estimates with the best approximations of splines of a special type by polynomials in <span>\\\\({{L}_{1}}[0;1]\\\\)</span> and with the Peano kernel is established. Exact constants of the embedding of the space <span>\\\\(\\\\overset{\\\\circ}{W}{}_{\\\\infty }^{n}[0;1]\\\\)</span> in <span>\\\\({{L}_{\\\\infty }}[0;1]\\\\)</span> are found.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract-For functions from the Sobolev space \(\overset\{circ}{W}{\,}_{\infty }^{n}[0;1]\) and an arbitrary point \(a\in (0;1)\), the best estimates are obtained in the inequality \({\text{|}}f(a){\text{|}})leqslant {{A}_{n,0,\infty }}}(a)\, \cdot \,{\text{||}}{f}^{{(n)}}}{\text{|}}{{\text{|}}}{{{\text{|}}}_{{{{L}_\{infty }}}[0;1]}}}\).这些估计值与 \({{L}_{1}}[0;1]\) 中多项式的特殊类型花键的最佳近似值以及与 Peano 内核的联系已经建立。在 \({{L}_{\infty }}[0;1]\) 中找到了空间 \(\overset{\circ}{W}{\,}_{\infty }^{n}[0;1]\) 嵌入的精确常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Exact Estimates of Functions in Sobolev Spaces with Uniform Norm

For functions from the Sobolev space \(\overset{\circ}{W}{} _{\infty }^{n}[0;1]\) and an arbitrary point \(a \in (0;1)\), the best estimates are obtained in the inequality \({\text{|}}f(a){\text{|}} \leqslant {{A}_{{n,0,\infty }}}(a)\, \cdot \,{\text{||}}{{f}^{{(n)}}}{\text{|}}{{{\text{|}}}_{{{{L}_{\infty }}[0;1]}}}\). The connection of these estimates with the best approximations of splines of a special type by polynomials in \({{L}_{1}}[0;1]\) and with the Peano kernel is established. Exact constants of the embedding of the space \(\overset{\circ}{W}{}_{\infty }^{n}[0;1]\) in \({{L}_{\infty }}[0;1]\) are found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信