Yuhuai Peng, Xiaoliang Guang, Xinyu Zhang, Lei Liu, Cemulige Wu, Lei Huang
{"title":"利用潜在游戏的云边协作计算框架,实现天-空-地一体化物联网","authors":"Yuhuai Peng, Xiaoliang Guang, Xinyu Zhang, Lei Liu, Cemulige Wu, Lei Huang","doi":"10.1186/s13634-024-01122-6","DOIUrl":null,"url":null,"abstract":"<p>As a critical component of space-air-ground integrated IoT, the aerial network provides highly reliable, low-latency and ubiquitous information services to ground users by virtue of their high mobility, easy deployment and low cost. However, the current computation and resource management model of air-ground integrated networks are insufficient to meet the latency demanding of emerging intelligent services such as autonomous systems, extended reality and haptic feedback. To tackle these challenges, we propose a computation offloading and optimization method based on potential game. First, we construct an cloud-edge collaborative computing model. Secondly, we construct Offloading Decision Objective Functions (ODOF) with the objective of minimum task processing latency and energy consumption. ODOF is proved to be a Mixed Inferior Nonlinear Programming (MINLP) problem, which is hard to solve. ODOF is converted to be a full potential game, and the Nash equilibrium solution exists. Then, a computational resource allocation algorithm based on Karush–Kuhn–Tucker (KKT) conditions is proposed to solve resource allocation problem. On this basis, a distributed game-based computational offloading algorithm is proposed to minimize the offloading cost. Extensive simulation results demonstrate that the convergence performance of the proposed algorithm is reduced by 50%, the convergence time is reduced by 13.3% and the average task processing delay is reduced by 10%.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"122 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cloud-edge collaborative computing framework using potential games for space-air-ground integrated IoT\",\"authors\":\"Yuhuai Peng, Xiaoliang Guang, Xinyu Zhang, Lei Liu, Cemulige Wu, Lei Huang\",\"doi\":\"10.1186/s13634-024-01122-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a critical component of space-air-ground integrated IoT, the aerial network provides highly reliable, low-latency and ubiquitous information services to ground users by virtue of their high mobility, easy deployment and low cost. However, the current computation and resource management model of air-ground integrated networks are insufficient to meet the latency demanding of emerging intelligent services such as autonomous systems, extended reality and haptic feedback. To tackle these challenges, we propose a computation offloading and optimization method based on potential game. First, we construct an cloud-edge collaborative computing model. Secondly, we construct Offloading Decision Objective Functions (ODOF) with the objective of minimum task processing latency and energy consumption. ODOF is proved to be a Mixed Inferior Nonlinear Programming (MINLP) problem, which is hard to solve. ODOF is converted to be a full potential game, and the Nash equilibrium solution exists. Then, a computational resource allocation algorithm based on Karush–Kuhn–Tucker (KKT) conditions is proposed to solve resource allocation problem. On this basis, a distributed game-based computational offloading algorithm is proposed to minimize the offloading cost. Extensive simulation results demonstrate that the convergence performance of the proposed algorithm is reduced by 50%, the convergence time is reduced by 13.3% and the average task processing delay is reduced by 10%.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01122-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01122-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A cloud-edge collaborative computing framework using potential games for space-air-ground integrated IoT
As a critical component of space-air-ground integrated IoT, the aerial network provides highly reliable, low-latency and ubiquitous information services to ground users by virtue of their high mobility, easy deployment and low cost. However, the current computation and resource management model of air-ground integrated networks are insufficient to meet the latency demanding of emerging intelligent services such as autonomous systems, extended reality and haptic feedback. To tackle these challenges, we propose a computation offloading and optimization method based on potential game. First, we construct an cloud-edge collaborative computing model. Secondly, we construct Offloading Decision Objective Functions (ODOF) with the objective of minimum task processing latency and energy consumption. ODOF is proved to be a Mixed Inferior Nonlinear Programming (MINLP) problem, which is hard to solve. ODOF is converted to be a full potential game, and the Nash equilibrium solution exists. Then, a computational resource allocation algorithm based on Karush–Kuhn–Tucker (KKT) conditions is proposed to solve resource allocation problem. On this basis, a distributed game-based computational offloading algorithm is proposed to minimize the offloading cost. Extensive simulation results demonstrate that the convergence performance of the proposed algorithm is reduced by 50%, the convergence time is reduced by 13.3% and the average task processing delay is reduced by 10%.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.