法诺三折的底消失

IF 1 3区 数学 Q1 MATHEMATICS
Burt Totaro
{"title":"法诺三折的底消失","authors":"Burt Totaro","doi":"10.1007/s00209-024-03468-x","DOIUrl":null,"url":null,"abstract":"<p>Bott proved a strong vanishing theorem for sheaf cohomology on projective space, namely that <span>\\(H^j(X,\\Omega ^i_X\\otimes L)=0\\)</span> for <span>\\(j&gt;0\\)</span>, <span>\\(i\\ge 0\\)</span>, and <i>L</i> ample. This holds for toric varieties, but not for most other varieties. We classify the smooth Fano threefolds that satisfy Bott vanishing. There are many more than expected.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"208 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bott vanishing for Fano threefolds\",\"authors\":\"Burt Totaro\",\"doi\":\"10.1007/s00209-024-03468-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bott proved a strong vanishing theorem for sheaf cohomology on projective space, namely that <span>\\\\(H^j(X,\\\\Omega ^i_X\\\\otimes L)=0\\\\)</span> for <span>\\\\(j&gt;0\\\\)</span>, <span>\\\\(i\\\\ge 0\\\\)</span>, and <i>L</i> ample. This holds for toric varieties, but not for most other varieties. We classify the smooth Fano threefolds that satisfy Bott vanishing. There are many more than expected.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03468-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03468-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

博特证明了投影空间上的剪子同调的强消失定理,即对于 \(j>0\), \(i\ge 0\), 和 L ample,\(H^j(X,\Omega ^i_X\otimes L)=0\) 。这对环状变种成立,但对大多数其他变种不成立。我们对满足底消失的光滑法诺三褶进行了分类。比预想的要多得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bott vanishing for Fano threefolds

Bott proved a strong vanishing theorem for sheaf cohomology on projective space, namely that \(H^j(X,\Omega ^i_X\otimes L)=0\) for \(j>0\), \(i\ge 0\), and L ample. This holds for toric varieties, but not for most other varieties. We classify the smooth Fano threefolds that satisfy Bott vanishing. There are many more than expected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信