{"title":"法诺三折的底消失","authors":"Burt Totaro","doi":"10.1007/s00209-024-03468-x","DOIUrl":null,"url":null,"abstract":"<p>Bott proved a strong vanishing theorem for sheaf cohomology on projective space, namely that <span>\\(H^j(X,\\Omega ^i_X\\otimes L)=0\\)</span> for <span>\\(j>0\\)</span>, <span>\\(i\\ge 0\\)</span>, and <i>L</i> ample. This holds for toric varieties, but not for most other varieties. We classify the smooth Fano threefolds that satisfy Bott vanishing. There are many more than expected.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"208 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bott vanishing for Fano threefolds\",\"authors\":\"Burt Totaro\",\"doi\":\"10.1007/s00209-024-03468-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bott proved a strong vanishing theorem for sheaf cohomology on projective space, namely that <span>\\\\(H^j(X,\\\\Omega ^i_X\\\\otimes L)=0\\\\)</span> for <span>\\\\(j>0\\\\)</span>, <span>\\\\(i\\\\ge 0\\\\)</span>, and <i>L</i> ample. This holds for toric varieties, but not for most other varieties. We classify the smooth Fano threefolds that satisfy Bott vanishing. There are many more than expected.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03468-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03468-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
博特证明了投影空间上的剪子同调的强消失定理,即对于 \(j>0\), \(i\ge 0\), 和 L ample,\(H^j(X,\Omega ^i_X\otimes L)=0\) 。这对环状变种成立,但对大多数其他变种不成立。我们对满足底消失的光滑法诺三褶进行了分类。比预想的要多得多。
Bott proved a strong vanishing theorem for sheaf cohomology on projective space, namely that \(H^j(X,\Omega ^i_X\otimes L)=0\) for \(j>0\), \(i\ge 0\), and L ample. This holds for toric varieties, but not for most other varieties. We classify the smooth Fano threefolds that satisfy Bott vanishing. There are many more than expected.