列表的无量纲归纳法

IF 0.3 4区 数学 Q1 Arts and Humanities
Stefan Hetzl, Jannik Vierling
{"title":"列表的无量纲归纳法","authors":"Stefan Hetzl,&nbsp;Jannik Vierling","doi":"10.1007/s00153-024-00923-8","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate quantifier-free induction for Lisp-like lists constructed inductively from the empty list <span>\\( nil \\)</span> and the operation <span>\\({\\textit{cons}}\\)</span>, that adds an element to the front of a list. First we show that, for <span>\\(m \\ge 1\\)</span>, quantifier-free <span>\\(m\\)</span>-step induction does not simulate quantifier-free <span>\\((m + 1)\\)</span>-step induction. Secondly, we show that for all <span>\\(m \\ge 1\\)</span>, quantifier-free <span>\\(m\\)</span>-step induction does not prove the right cancellation property of the concatenation operation on lists defined by left-recursion.\n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00923-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantifier-free induction for lists\",\"authors\":\"Stefan Hetzl,&nbsp;Jannik Vierling\",\"doi\":\"10.1007/s00153-024-00923-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate quantifier-free induction for Lisp-like lists constructed inductively from the empty list <span>\\\\( nil \\\\)</span> and the operation <span>\\\\({\\\\textit{cons}}\\\\)</span>, that adds an element to the front of a list. First we show that, for <span>\\\\(m \\\\ge 1\\\\)</span>, quantifier-free <span>\\\\(m\\\\)</span>-step induction does not simulate quantifier-free <span>\\\\((m + 1)\\\\)</span>-step induction. Secondly, we show that for all <span>\\\\(m \\\\ge 1\\\\)</span>, quantifier-free <span>\\\\(m\\\\)</span>-step induction does not prove the right cancellation property of the concatenation operation on lists defined by left-recursion.\\n</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-024-00923-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-024-00923-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00923-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了类似 Lisp 的列表的无量纲归纳法,它是由空列表 \( nil \)和在列表前添加元素的操作 \({\textit{cons}}\)归纳构建的。首先,我们证明对于(m)来说,无量纲的(m)步归纳法并不能模拟无量纲的((m + 1)步归纳法)。其次,我们证明了对于所有的(m),无量纲的(m)步归纳法并不能证明左递归定义的列表上的连接操作的右取消属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantifier-free induction for lists

Quantifier-free induction for lists

We investigate quantifier-free induction for Lisp-like lists constructed inductively from the empty list \( nil \) and the operation \({\textit{cons}}\), that adds an element to the front of a list. First we show that, for \(m \ge 1\), quantifier-free \(m\)-step induction does not simulate quantifier-free \((m + 1)\)-step induction. Secondly, we show that for all \(m \ge 1\), quantifier-free \(m\)-step induction does not prove the right cancellation property of the concatenation operation on lists defined by left-recursion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信