{"title":"反斯特姆-刘维尔问题解的重构","authors":"Zhaoying Wei, Zhijie Hu, Yuewen Xiang","doi":"10.1186/s13661-024-01860-4","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned with an inverse problem with Robin boundary conditions, which states that, when the potential on $[0,1/2]$ and the coefficient at the left end point are known a priori, a full spectrum uniquely determines its potential on the whole interval and the coefficient at the right end point. We shall give a new method for reconstructing the potential for this problem in terms of the Mittag-Leffler decomposition of entire functions associated with this problem. The new reconstructing method also deduces a necessary and sufficient condition for the existence issue.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"21 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of the solution of inverse Sturm–Liouville problem\",\"authors\":\"Zhaoying Wei, Zhijie Hu, Yuewen Xiang\",\"doi\":\"10.1186/s13661-024-01860-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are concerned with an inverse problem with Robin boundary conditions, which states that, when the potential on $[0,1/2]$ and the coefficient at the left end point are known a priori, a full spectrum uniquely determines its potential on the whole interval and the coefficient at the right end point. We shall give a new method for reconstructing the potential for this problem in terms of the Mittag-Leffler decomposition of entire functions associated with this problem. The new reconstructing method also deduces a necessary and sufficient condition for the existence issue.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01860-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01860-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Reconstruction of the solution of inverse Sturm–Liouville problem
In this paper we are concerned with an inverse problem with Robin boundary conditions, which states that, when the potential on $[0,1/2]$ and the coefficient at the left end point are known a priori, a full spectrum uniquely determines its potential on the whole interval and the coefficient at the right end point. We shall give a new method for reconstructing the potential for this problem in terms of the Mittag-Leffler decomposition of entire functions associated with this problem. The new reconstructing method also deduces a necessary and sufficient condition for the existence issue.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.