{"title":"粉煤灰混凝土透水性在实验室环境和现场环境中的时间依赖性和相似性","authors":"Junzhi Zhang, Libin Zhou, Yucheng He, Yurong Zhang","doi":"10.3151/jact.22.219","DOIUrl":null,"url":null,"abstract":"</p><p>Effects of fly ash (FA) content and environmental factors on the water permeability were studied, and the similarity relationship of time-dependent water permeability coefficient in site and laboratory environment was discussed. Meanwhile, the main microstructure parameters and their time-dependent characteristics were analyzed by the NMR method. Finally, the correlation between water permeability and porosity in two environments was analyzed. Results show that water permeability coefficient of FA concrete both decreased with exposure time in two environments. FA can effectively improve the water impermeability, and the improvement effect increased with FA content in the later exposure period. Laboratory environment accelerated the decrease of water permeability and porosity. However, in the later stage, the decrease degree was not as good as that in the site environment. Pores with size of 10 to 100 nm occupy the main part of pores in FA concrete and the proportion of harmful pores of diameter 100 nm or larger decreased with exposure time. The water permeability coefficient and porosity of concrete exposed for 520 days in laboratory are close to that exposed for 800 to 1000 days in site, showing a good time dependent correlation in both environments, and the correlation with exposure time is stronger than that considering FA content.</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Dependency and Similarity of Water Permeability of Fly Ash Concrete Between Laboratory Environment and Site Environment\",\"authors\":\"Junzhi Zhang, Libin Zhou, Yucheng He, Yurong Zhang\",\"doi\":\"10.3151/jact.22.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Effects of fly ash (FA) content and environmental factors on the water permeability were studied, and the similarity relationship of time-dependent water permeability coefficient in site and laboratory environment was discussed. Meanwhile, the main microstructure parameters and their time-dependent characteristics were analyzed by the NMR method. Finally, the correlation between water permeability and porosity in two environments was analyzed. Results show that water permeability coefficient of FA concrete both decreased with exposure time in two environments. FA can effectively improve the water impermeability, and the improvement effect increased with FA content in the later exposure period. Laboratory environment accelerated the decrease of water permeability and porosity. However, in the later stage, the decrease degree was not as good as that in the site environment. Pores with size of 10 to 100 nm occupy the main part of pores in FA concrete and the proportion of harmful pores of diameter 100 nm or larger decreased with exposure time. The water permeability coefficient and porosity of concrete exposed for 520 days in laboratory are close to that exposed for 800 to 1000 days in site, showing a good time dependent correlation in both environments, and the correlation with exposure time is stronger than that considering FA content.</p>\\n<p></p>\",\"PeriodicalId\":14868,\"journal\":{\"name\":\"Journal of Advanced Concrete Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Concrete Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3151/jact.22.219\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.22.219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Time Dependency and Similarity of Water Permeability of Fly Ash Concrete Between Laboratory Environment and Site Environment
Effects of fly ash (FA) content and environmental factors on the water permeability were studied, and the similarity relationship of time-dependent water permeability coefficient in site and laboratory environment was discussed. Meanwhile, the main microstructure parameters and their time-dependent characteristics were analyzed by the NMR method. Finally, the correlation between water permeability and porosity in two environments was analyzed. Results show that water permeability coefficient of FA concrete both decreased with exposure time in two environments. FA can effectively improve the water impermeability, and the improvement effect increased with FA content in the later exposure period. Laboratory environment accelerated the decrease of water permeability and porosity. However, in the later stage, the decrease degree was not as good as that in the site environment. Pores with size of 10 to 100 nm occupy the main part of pores in FA concrete and the proportion of harmful pores of diameter 100 nm or larger decreased with exposure time. The water permeability coefficient and porosity of concrete exposed for 520 days in laboratory are close to that exposed for 800 to 1000 days in site, showing a good time dependent correlation in both environments, and the correlation with exposure time is stronger than that considering FA content.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics