{"title":"湿度和盐度对用于近海应用的纳米工程环氧聚合物性能降解的影响","authors":"B. S. Sindu, Saptarshi Sasmal","doi":"10.1177/07316844241247897","DOIUrl":null,"url":null,"abstract":"This study has attempted to investigate the influence of major environmental degradation factors for offshore and coastal structures, such as moisture and salinity, on epoxy-based bonded composite systems and to identify the means of degradation of the same. Exhaustive experimental investigations have been carried out with different salinity levels (0%, 2.5% and 5%) and exposure periods (45 days to longer time periods (>1 year)) to determine the influence of the same on the mechanical property degradation of epoxy polymers. The effect of degraded properties on the performance degradation of bonded epoxy composite systems in terms of damage pattern and load-carrying capacity has been investigated using numerical simulations with non-linear material models and traction-separation interface behaviour. Further, it is also attempted to fundamentally engineer the epoxy polymers using nanosilica to improve their mechanical properties and environmental resistance. Finally, diffusion tests have been performed on the plain and nanoengineered epoxy polymers to understand the change in diffusion mechanisms due to nanoengineering, and a correlation has been established between the diffusion behaviour and the mechanical property degradation. The findings of this study will lead towards the development of stronger and more durable epoxy-bonded composite systems for marine applications.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"38 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of moisture and salinity on property degradation of nano-engineered epoxy polymers for offshore applications\",\"authors\":\"B. S. Sindu, Saptarshi Sasmal\",\"doi\":\"10.1177/07316844241247897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study has attempted to investigate the influence of major environmental degradation factors for offshore and coastal structures, such as moisture and salinity, on epoxy-based bonded composite systems and to identify the means of degradation of the same. Exhaustive experimental investigations have been carried out with different salinity levels (0%, 2.5% and 5%) and exposure periods (45 days to longer time periods (>1 year)) to determine the influence of the same on the mechanical property degradation of epoxy polymers. The effect of degraded properties on the performance degradation of bonded epoxy composite systems in terms of damage pattern and load-carrying capacity has been investigated using numerical simulations with non-linear material models and traction-separation interface behaviour. Further, it is also attempted to fundamentally engineer the epoxy polymers using nanosilica to improve their mechanical properties and environmental resistance. Finally, diffusion tests have been performed on the plain and nanoengineered epoxy polymers to understand the change in diffusion mechanisms due to nanoengineering, and a correlation has been established between the diffusion behaviour and the mechanical property degradation. The findings of this study will lead towards the development of stronger and more durable epoxy-bonded composite systems for marine applications.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241247897\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241247897","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Influence of moisture and salinity on property degradation of nano-engineered epoxy polymers for offshore applications
This study has attempted to investigate the influence of major environmental degradation factors for offshore and coastal structures, such as moisture and salinity, on epoxy-based bonded composite systems and to identify the means of degradation of the same. Exhaustive experimental investigations have been carried out with different salinity levels (0%, 2.5% and 5%) and exposure periods (45 days to longer time periods (>1 year)) to determine the influence of the same on the mechanical property degradation of epoxy polymers. The effect of degraded properties on the performance degradation of bonded epoxy composite systems in terms of damage pattern and load-carrying capacity has been investigated using numerical simulations with non-linear material models and traction-separation interface behaviour. Further, it is also attempted to fundamentally engineer the epoxy polymers using nanosilica to improve their mechanical properties and environmental resistance. Finally, diffusion tests have been performed on the plain and nanoengineered epoxy polymers to understand the change in diffusion mechanisms due to nanoengineering, and a correlation has been established between the diffusion behaviour and the mechanical property degradation. The findings of this study will lead towards the development of stronger and more durable epoxy-bonded composite systems for marine applications.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).