{"title":"结核分枝杆菌与人类之间的基因组相互作用","authors":"Prasit Palittapongarnpim, Pornpen Tantivitayakul, Pakorn Aiewsakun, Surakameth Mahasirimongkol, Bharkbhoom Jaemsai","doi":"10.1146/annurev-genom-021623-101844","DOIUrl":null,"url":null,"abstract":"<jats:italic>Mycobacterium tuberculosis</jats:italic> is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including <jats:italic>Mycobacterium africanum</jats:italic>, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":"122 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic Interactions Between Mycobacterium tuberculosis and Humans\",\"authors\":\"Prasit Palittapongarnpim, Pornpen Tantivitayakul, Pakorn Aiewsakun, Surakameth Mahasirimongkol, Bharkbhoom Jaemsai\",\"doi\":\"10.1146/annurev-genom-021623-101844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:italic>Mycobacterium tuberculosis</jats:italic> is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including <jats:italic>Mycobacterium africanum</jats:italic>, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.\",\"PeriodicalId\":8231,\"journal\":{\"name\":\"Annual review of genomics and human genetics\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genomics and human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genom-021623-101844\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-021623-101844","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genomic Interactions Between Mycobacterium tuberculosis and Humans
Mycobacterium tuberculosis is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including Mycobacterium africanum, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.
期刊介绍:
Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.