采用 "干式 "连接的预制混凝土框架的抗震风险评估

IF 2.6 2区 工程技术 Q2 ENGINEERING, CIVIL
Chenhao Wu, Yuchuan Tang, Xuyang Cao, Gang Wu
{"title":"采用 \"干式 \"连接的预制混凝土框架的抗震风险评估","authors":"Chenhao Wu, Yuchuan Tang, Xuyang Cao, Gang Wu","doi":"10.1007/s11803-024-2244-x","DOIUrl":null,"url":null,"abstract":"<p>A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame (PCF) structures with “dry” connections in terms of their low damage and rapid recovery. The framework integrates various uncertainties in the seismic hazard, fragility, capacity, demand, loss functions, and post-earthquake recovery. In this study, the PCF structures are distinguished from ordinary reinforced concrete frame (RCF) structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms. Accordingly, probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states. In the seismic resilience analysis, a step-wise recovery model is proposed to idealize the functionality recovery process, with separate considerations of the repair and non-repair events. The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation. As such, contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented. The proposed framework is demonstrated through a comparative study between two “dry” connected PCFs and one RCF designed as alternative structural systems for a prototype building. The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF. Particularly, the PCF equipped with energy dissipation devices at the “dry” connections largely reduces the expected economic loss, downtime, and resilience loss by 29%, 56%, and 60%, respectively, compared to the RCF.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience-incorporated seismic risk assessment of precast concrete frames with “dry” connections\",\"authors\":\"Chenhao Wu, Yuchuan Tang, Xuyang Cao, Gang Wu\",\"doi\":\"10.1007/s11803-024-2244-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame (PCF) structures with “dry” connections in terms of their low damage and rapid recovery. The framework integrates various uncertainties in the seismic hazard, fragility, capacity, demand, loss functions, and post-earthquake recovery. In this study, the PCF structures are distinguished from ordinary reinforced concrete frame (RCF) structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms. Accordingly, probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states. In the seismic resilience analysis, a step-wise recovery model is proposed to idealize the functionality recovery process, with separate considerations of the repair and non-repair events. The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation. As such, contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented. The proposed framework is demonstrated through a comparative study between two “dry” connected PCFs and one RCF designed as alternative structural systems for a prototype building. The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF. Particularly, the PCF equipped with energy dissipation devices at the “dry” connections largely reduces the expected economic loss, downtime, and resilience loss by 29%, 56%, and 60%, respectively, compared to the RCF.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2244-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2244-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出并展示了一个包含抗震能力的风险评估框架,以体现采用 "干式 "连接的预制混凝土框架(PCF)结构在低破坏和快速恢复方面的抗震能力优势。该框架整合了地震灾害、脆性、承载力、需求、损失函数和震后恢复中的各种不确定性。在本研究中,PCF 结构有别于普通钢筋混凝土框架结构(RCF),根据其独特的破坏机制,确定了 PCF 结构的多种极限状态。因此,我们进行了概率分层推移分析,以得出预定极限状态下的分层承载力。在抗震分析中,提出了一个逐步恢复模型,以理想化功能恢复过程,并分别考虑修复和非修复事件。恢复模型利用经济损失和停机时间来划定随机震后恢复曲线,以进行抗震损失估计。因此,震后修复中的概率突发事件被纳入其中,并在很大程度上避免了对恢复参数的经验判断。通过对作为原型建筑替代结构系统设计的两个 "干式 "连接 PCF 和一个 RCF 进行比较研究,证明了所提出的框架。风险量化的结果表明,PCF 与 RCF 相比,损失风险更小,预期损失更低。尤其是在 "干 "连接处配备了消能装置的 PCF,与 RCF 相比,预期经济损失、停工期和复原力损失分别降低了 29%、56% 和 60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilience-incorporated seismic risk assessment of precast concrete frames with “dry” connections

A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame (PCF) structures with “dry” connections in terms of their low damage and rapid recovery. The framework integrates various uncertainties in the seismic hazard, fragility, capacity, demand, loss functions, and post-earthquake recovery. In this study, the PCF structures are distinguished from ordinary reinforced concrete frame (RCF) structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms. Accordingly, probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states. In the seismic resilience analysis, a step-wise recovery model is proposed to idealize the functionality recovery process, with separate considerations of the repair and non-repair events. The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation. As such, contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented. The proposed framework is demonstrated through a comparative study between two “dry” connected PCFs and one RCF designed as alternative structural systems for a prototype building. The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF. Particularly, the PCF equipped with energy dissipation devices at the “dry” connections largely reduces the expected economic loss, downtime, and resilience loss by 29%, 56%, and 60%, respectively, compared to the RCF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
21.40%
发文量
1057
审稿时长
9 months
期刊介绍: Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery. The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信