Lucía Alarcón-Ríos, Antigoni Kaliontzopoulou, David Álvarez, Guillermo Velo-Antón
{"title":"城市生活会影响完全陆生的蝾螈的分化和表型变异,但不会影响其不对称性","authors":"Lucía Alarcón-Ríos, Antigoni Kaliontzopoulou, David Álvarez, Guillermo Velo-Antón","doi":"10.1007/s11692-024-09635-6","DOIUrl":null,"url":null,"abstract":"<p>The environmental transformations associated with cities are expected to affect organisms at the demographic, phenotypic, and evolutionary level, often negatively. The prompt detection of stressed populations before their viability is compromised is essential to understand species’ responses to novel conditions and to integrate urbanization with biodiversity preservation. The presumably stressful conditions of urban environments are expected to affect organisms’ developmental pathways, resulting in a reduction of the efficacy of developmental stability and canalization processes, which can be observed as increased Fluctuating Asymmetry (FA) and Phenotypic Variance (PV), respectively. Here, we investigated whether patterns of phenotypic variation of urban populations of a fully terrestrial salamander, <i>Salamandra salamandra bernardezi</i>, are affected by urban settings compared to surrounding native forest populations. We sampled populations within and around the city of Oviedo (northern Spain) and used geometric morphometrics to compare morphological differentiation, head shape deviance from the allometric slope, PV, and FA. We also compared morphological patterns with neutral genetic and structure patterns. We observed increased levels of differentiation among urban populations and in PV within certain of them, yet no differences in allometric deviance and FA were detected between habitats, and no morphological measures were found to be correlated with genetic traits. Our results do not support a clear negative impact of urban conditions over salamander populations, but rather suggest that other ecological and evolutionary local processes influence morphological variation in this urban system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban Life Affects Differentiation and Phenotypic Variation but not Asymmetry in a Fully Terrestrial Salamander\",\"authors\":\"Lucía Alarcón-Ríos, Antigoni Kaliontzopoulou, David Álvarez, Guillermo Velo-Antón\",\"doi\":\"10.1007/s11692-024-09635-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The environmental transformations associated with cities are expected to affect organisms at the demographic, phenotypic, and evolutionary level, often negatively. The prompt detection of stressed populations before their viability is compromised is essential to understand species’ responses to novel conditions and to integrate urbanization with biodiversity preservation. The presumably stressful conditions of urban environments are expected to affect organisms’ developmental pathways, resulting in a reduction of the efficacy of developmental stability and canalization processes, which can be observed as increased Fluctuating Asymmetry (FA) and Phenotypic Variance (PV), respectively. Here, we investigated whether patterns of phenotypic variation of urban populations of a fully terrestrial salamander, <i>Salamandra salamandra bernardezi</i>, are affected by urban settings compared to surrounding native forest populations. We sampled populations within and around the city of Oviedo (northern Spain) and used geometric morphometrics to compare morphological differentiation, head shape deviance from the allometric slope, PV, and FA. We also compared morphological patterns with neutral genetic and structure patterns. We observed increased levels of differentiation among urban populations and in PV within certain of them, yet no differences in allometric deviance and FA were detected between habitats, and no morphological measures were found to be correlated with genetic traits. Our results do not support a clear negative impact of urban conditions over salamander populations, but rather suggest that other ecological and evolutionary local processes influence morphological variation in this urban system.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11692-024-09635-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-024-09635-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Urban Life Affects Differentiation and Phenotypic Variation but not Asymmetry in a Fully Terrestrial Salamander
The environmental transformations associated with cities are expected to affect organisms at the demographic, phenotypic, and evolutionary level, often negatively. The prompt detection of stressed populations before their viability is compromised is essential to understand species’ responses to novel conditions and to integrate urbanization with biodiversity preservation. The presumably stressful conditions of urban environments are expected to affect organisms’ developmental pathways, resulting in a reduction of the efficacy of developmental stability and canalization processes, which can be observed as increased Fluctuating Asymmetry (FA) and Phenotypic Variance (PV), respectively. Here, we investigated whether patterns of phenotypic variation of urban populations of a fully terrestrial salamander, Salamandra salamandra bernardezi, are affected by urban settings compared to surrounding native forest populations. We sampled populations within and around the city of Oviedo (northern Spain) and used geometric morphometrics to compare morphological differentiation, head shape deviance from the allometric slope, PV, and FA. We also compared morphological patterns with neutral genetic and structure patterns. We observed increased levels of differentiation among urban populations and in PV within certain of them, yet no differences in allometric deviance and FA were detected between habitats, and no morphological measures were found to be correlated with genetic traits. Our results do not support a clear negative impact of urban conditions over salamander populations, but rather suggest that other ecological and evolutionary local processes influence morphological variation in this urban system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.