{"title":"信号量化机器人系统轨迹跟踪的事件触发滑模控制","authors":"Hang Gao, Chao Ma, Xiaodong Zhang, Jun Zheng","doi":"10.1177/09596518241240179","DOIUrl":null,"url":null,"abstract":"This paper deals with robotic systems trajectory tracking problems by designing a new event-triggered sliding mode control (ET-SMC) algorithm with signal quantization. More precisely, an event-triggered control strategy is introduced to the sliding mode control algorithm with robustness to reduce the controller update frequency, so as to reduce the network communication resources consumption and maintain the control accuracy. In addition, the dynamic quantization method is adopted between the controller and the actuator for more communication efficiency. Unlike periodic time-triggered control strategy, a novel event triggering condition which requires no state-dependent variables is discussed for less triggering threshold computations. Furthermore, the minimum interval of adjacent triggering instant based on the new triggering condition can be obtained to avoid the Zeno phenomenon. Finally, simulation results demonstrate the validity of the presented control algorithm and practical experiments with a PHANToM Omni robotic device are given to verify the advanced performances. As a result, the trajectory tracking error is limited within a small range and the control update frequency is evidently reduced.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"22 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered sliding mode control for trajectory tracking of robotic system with signal quantization\",\"authors\":\"Hang Gao, Chao Ma, Xiaodong Zhang, Jun Zheng\",\"doi\":\"10.1177/09596518241240179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with robotic systems trajectory tracking problems by designing a new event-triggered sliding mode control (ET-SMC) algorithm with signal quantization. More precisely, an event-triggered control strategy is introduced to the sliding mode control algorithm with robustness to reduce the controller update frequency, so as to reduce the network communication resources consumption and maintain the control accuracy. In addition, the dynamic quantization method is adopted between the controller and the actuator for more communication efficiency. Unlike periodic time-triggered control strategy, a novel event triggering condition which requires no state-dependent variables is discussed for less triggering threshold computations. Furthermore, the minimum interval of adjacent triggering instant based on the new triggering condition can be obtained to avoid the Zeno phenomenon. Finally, simulation results demonstrate the validity of the presented control algorithm and practical experiments with a PHANToM Omni robotic device are given to verify the advanced performances. As a result, the trajectory tracking error is limited within a small range and the control update frequency is evidently reduced.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518241240179\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518241240179","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Event-triggered sliding mode control for trajectory tracking of robotic system with signal quantization
This paper deals with robotic systems trajectory tracking problems by designing a new event-triggered sliding mode control (ET-SMC) algorithm with signal quantization. More precisely, an event-triggered control strategy is introduced to the sliding mode control algorithm with robustness to reduce the controller update frequency, so as to reduce the network communication resources consumption and maintain the control accuracy. In addition, the dynamic quantization method is adopted between the controller and the actuator for more communication efficiency. Unlike periodic time-triggered control strategy, a novel event triggering condition which requires no state-dependent variables is discussed for less triggering threshold computations. Furthermore, the minimum interval of adjacent triggering instant based on the new triggering condition can be obtained to avoid the Zeno phenomenon. Finally, simulation results demonstrate the validity of the presented control algorithm and practical experiments with a PHANToM Omni robotic device are given to verify the advanced performances. As a result, the trajectory tracking error is limited within a small range and the control update frequency is evidently reduced.
期刊介绍:
Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies.
"It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK
This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.