Robert Walmsley , Derek S. Steele , Sotiris Papaspyros , Andrew J. Smith
{"title":"舒尼替尼苹果酸盐诱导成年人类心脏祖细胞的细胞死亡","authors":"Robert Walmsley , Derek S. Steele , Sotiris Papaspyros , Andrew J. Smith","doi":"10.1016/j.crtox.2024.100167","DOIUrl":null,"url":null,"abstract":"<div><p>Sunitinib malate is known to cause cardiotoxicity in a sub-population of patients, with heart failure seen in more severe cases. Cardiac progenitor cells (CPCs) have been identified in adult human myocardium and contribute to overall tissue maintenance, with previous work identifying negative impacts of sunitinib on these cells. This study aimed to characterise the toxic effects of sunitinib in human CPCs, applying sunitinib concentrations equivalent to clinical plasma levels to these cells <em>in vitro</em>. Cell viability was reduced by 26.5 ± 6.6 % by 2 μM sunitinib for 24 h (<em>p</em> < 0.01); this concentration also induced fold-change increases in gene expression of: calpain (3.1 ± 0.73, <em>p</em> < 0.05), FAS (2.3 ± 0.8, <em>p</em> < 0.05) and BAX (1.9 ± 0.2, <em>p</em> < 0.05), and a decrease in BCL-2 (3.5 ± 0.0, <em>p</em> < 0.001), <em>vs</em>. control (1.0 ± 0.0). This was affirmed by sunitinib inducing fold changes in protein expression of: calpain-1 (2.5 ± 0.5, <em>p</em> < 0.05); FAS receptor (2.1 ± 0.2, <em>p</em> < 0.05) and BAX (2.1 ± 0.2, <em>p</em> < 0.05) <em>vs</em>. control (1.0 ± 0.0). These results indicated that sunitinib induced apoptosis in CPCs, but negative annexin V staining and lack of protection by caspase inhibitors indicated this was not the cell death pathway activated. Further investigation found sunitinib was concentrated in the lysosomes and autophagosomes within CPCs, but did not induce accumulation of acidic organelles. In conclusion, these data confirm that cell death is caused by sunitinib in CPCs at concentrations equivalent to clinical plasma levels, inducing cell death pathway signals that lead to non-apoptotic cell death.</p></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"6 ","pages":"Article 100167"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666027X24000203/pdfft?md5=4e2738196d2fda4a1c0103db46288bc7&pid=1-s2.0-S2666027X24000203-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sunitinib malate induces cell death in adult human cardiac progenitor cells\",\"authors\":\"Robert Walmsley , Derek S. Steele , Sotiris Papaspyros , Andrew J. Smith\",\"doi\":\"10.1016/j.crtox.2024.100167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sunitinib malate is known to cause cardiotoxicity in a sub-population of patients, with heart failure seen in more severe cases. Cardiac progenitor cells (CPCs) have been identified in adult human myocardium and contribute to overall tissue maintenance, with previous work identifying negative impacts of sunitinib on these cells. This study aimed to characterise the toxic effects of sunitinib in human CPCs, applying sunitinib concentrations equivalent to clinical plasma levels to these cells <em>in vitro</em>. Cell viability was reduced by 26.5 ± 6.6 % by 2 μM sunitinib for 24 h (<em>p</em> < 0.01); this concentration also induced fold-change increases in gene expression of: calpain (3.1 ± 0.73, <em>p</em> < 0.05), FAS (2.3 ± 0.8, <em>p</em> < 0.05) and BAX (1.9 ± 0.2, <em>p</em> < 0.05), and a decrease in BCL-2 (3.5 ± 0.0, <em>p</em> < 0.001), <em>vs</em>. control (1.0 ± 0.0). This was affirmed by sunitinib inducing fold changes in protein expression of: calpain-1 (2.5 ± 0.5, <em>p</em> < 0.05); FAS receptor (2.1 ± 0.2, <em>p</em> < 0.05) and BAX (2.1 ± 0.2, <em>p</em> < 0.05) <em>vs</em>. control (1.0 ± 0.0). These results indicated that sunitinib induced apoptosis in CPCs, but negative annexin V staining and lack of protection by caspase inhibitors indicated this was not the cell death pathway activated. Further investigation found sunitinib was concentrated in the lysosomes and autophagosomes within CPCs, but did not induce accumulation of acidic organelles. In conclusion, these data confirm that cell death is caused by sunitinib in CPCs at concentrations equivalent to clinical plasma levels, inducing cell death pathway signals that lead to non-apoptotic cell death.</p></div>\",\"PeriodicalId\":11236,\"journal\":{\"name\":\"Current Research in Toxicology\",\"volume\":\"6 \",\"pages\":\"Article 100167\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000203/pdfft?md5=4e2738196d2fda4a1c0103db46288bc7&pid=1-s2.0-S2666027X24000203-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X24000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Sunitinib malate induces cell death in adult human cardiac progenitor cells
Sunitinib malate is known to cause cardiotoxicity in a sub-population of patients, with heart failure seen in more severe cases. Cardiac progenitor cells (CPCs) have been identified in adult human myocardium and contribute to overall tissue maintenance, with previous work identifying negative impacts of sunitinib on these cells. This study aimed to characterise the toxic effects of sunitinib in human CPCs, applying sunitinib concentrations equivalent to clinical plasma levels to these cells in vitro. Cell viability was reduced by 26.5 ± 6.6 % by 2 μM sunitinib for 24 h (p < 0.01); this concentration also induced fold-change increases in gene expression of: calpain (3.1 ± 0.73, p < 0.05), FAS (2.3 ± 0.8, p < 0.05) and BAX (1.9 ± 0.2, p < 0.05), and a decrease in BCL-2 (3.5 ± 0.0, p < 0.001), vs. control (1.0 ± 0.0). This was affirmed by sunitinib inducing fold changes in protein expression of: calpain-1 (2.5 ± 0.5, p < 0.05); FAS receptor (2.1 ± 0.2, p < 0.05) and BAX (2.1 ± 0.2, p < 0.05) vs. control (1.0 ± 0.0). These results indicated that sunitinib induced apoptosis in CPCs, but negative annexin V staining and lack of protection by caspase inhibitors indicated this was not the cell death pathway activated. Further investigation found sunitinib was concentrated in the lysosomes and autophagosomes within CPCs, but did not induce accumulation of acidic organelles. In conclusion, these data confirm that cell death is caused by sunitinib in CPCs at concentrations equivalent to clinical plasma levels, inducing cell death pathway signals that lead to non-apoptotic cell death.