Sumin Hwangbo , J. Jay Liu , Jun-Hyung Ryu , Ho Jae Lee , Jonggeol Na
{"title":"通过探索性强化学习重新安排生产,同时考虑紧张因素","authors":"Sumin Hwangbo , J. Jay Liu , Jun-Hyung Ryu , Ho Jae Lee , Jonggeol Na","doi":"10.1016/j.compchemeng.2024.108700","DOIUrl":null,"url":null,"abstract":"<div><p>Nervousness-aware rescheduling is essential in maximizing the profitability and stability of processes in manufacturing industries. It involves re-optimization to meet scheduling goals while minimizing deviations from the base schedule. However, conventional mathematical optimization becomes impractical due to high computational costs and the inability to handle real-time rescheduling. Here, we propose an online rescheduling agent trained by explorative reinforcement learning that autonomously optimizes schedules while considering schedule nervousness. In a static scheduling environment, our model consistently achieves over 90% of the cost objective with scalability and flexibility. A computational time comparison proves that the reinforcement learning methodology makes near-optimal decisions rapidly, irrespective of the complexity of the scheduling problem. Furthermore, we present several realistic rescheduling scenarios that demonstrate the capability of our methodology. Our study illustrates the significant potential of reinforcement learning methodology in expediting digital transformation and process automation within real-world manufacturing systems.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"186 ","pages":"Article 108700"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production rescheduling via explorative reinforcement learning while considering nervousness\",\"authors\":\"Sumin Hwangbo , J. Jay Liu , Jun-Hyung Ryu , Ho Jae Lee , Jonggeol Na\",\"doi\":\"10.1016/j.compchemeng.2024.108700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nervousness-aware rescheduling is essential in maximizing the profitability and stability of processes in manufacturing industries. It involves re-optimization to meet scheduling goals while minimizing deviations from the base schedule. However, conventional mathematical optimization becomes impractical due to high computational costs and the inability to handle real-time rescheduling. Here, we propose an online rescheduling agent trained by explorative reinforcement learning that autonomously optimizes schedules while considering schedule nervousness. In a static scheduling environment, our model consistently achieves over 90% of the cost objective with scalability and flexibility. A computational time comparison proves that the reinforcement learning methodology makes near-optimal decisions rapidly, irrespective of the complexity of the scheduling problem. Furthermore, we present several realistic rescheduling scenarios that demonstrate the capability of our methodology. Our study illustrates the significant potential of reinforcement learning methodology in expediting digital transformation and process automation within real-world manufacturing systems.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"186 \",\"pages\":\"Article 108700\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001182\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424001182","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Production rescheduling via explorative reinforcement learning while considering nervousness
Nervousness-aware rescheduling is essential in maximizing the profitability and stability of processes in manufacturing industries. It involves re-optimization to meet scheduling goals while minimizing deviations from the base schedule. However, conventional mathematical optimization becomes impractical due to high computational costs and the inability to handle real-time rescheduling. Here, we propose an online rescheduling agent trained by explorative reinforcement learning that autonomously optimizes schedules while considering schedule nervousness. In a static scheduling environment, our model consistently achieves over 90% of the cost objective with scalability and flexibility. A computational time comparison proves that the reinforcement learning methodology makes near-optimal decisions rapidly, irrespective of the complexity of the scheduling problem. Furthermore, we present several realistic rescheduling scenarios that demonstrate the capability of our methodology. Our study illustrates the significant potential of reinforcement learning methodology in expediting digital transformation and process automation within real-world manufacturing systems.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.