纯球形自旋玻璃的低温朗温动力学阈值能

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mark Sellke
{"title":"纯球形自旋玻璃的低温朗温动力学阈值能","authors":"Mark Sellke","doi":"10.1002/cpa.22197","DOIUrl":null,"url":null,"abstract":"<p>We study the Langevin dynamics for spherical <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-spin models, focusing on the short time regime described by the Cugliandolo–Kurchan equations. Confirming a prediction of Cugliandolo and Kurchan, we show the asymptotic energy achieved is exactly <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>∞</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>2</mn>\n <msqrt>\n <mfrac>\n <mrow>\n <mi>p</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mi>p</mi>\n </mfrac>\n </msqrt>\n </mrow>\n <annotation>$E_{\\infty }(p)=2\\sqrt {\\frac{p-1}{p}}$</annotation>\n </semantics></math> in the low temperature limit. The upper bound uses hardness results for Lipschitz optimization algorithms and applies for all temperatures. For the lower bound, we prove the dynamics reaches and stays above the lowest energy of any <i>approximate local maximum</i>. In fact the latter behavior holds for any Hamiltonian obeying natural smoothness estimates, even with disorder-dependent initialization and on exponential time-scales.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The threshold energy of low temperature Langevin dynamics for pure spherical spin glasses\",\"authors\":\"Mark Sellke\",\"doi\":\"10.1002/cpa.22197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the Langevin dynamics for spherical <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-spin models, focusing on the short time regime described by the Cugliandolo–Kurchan equations. Confirming a prediction of Cugliandolo and Kurchan, we show the asymptotic energy achieved is exactly <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>∞</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mn>2</mn>\\n <msqrt>\\n <mfrac>\\n <mrow>\\n <mi>p</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>p</mi>\\n </mfrac>\\n </msqrt>\\n </mrow>\\n <annotation>$E_{\\\\infty }(p)=2\\\\sqrt {\\\\frac{p-1}{p}}$</annotation>\\n </semantics></math> in the low temperature limit. The upper bound uses hardness results for Lipschitz optimization algorithms and applies for all temperatures. For the lower bound, we prove the dynamics reaches and stays above the lowest energy of any <i>approximate local maximum</i>. In fact the latter behavior holds for any Hamiltonian obeying natural smoothness estimates, even with disorder-dependent initialization and on exponential time-scales.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22197\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22197","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了球形-自旋模型的朗格文动力学,重点是库里安多洛-库尔坎方程所描述的短时间机制。我们证实了 Cugliandolo 和 Kurchan 的预言,并证明所获得的渐近能量恰好处于低温极限。上界使用了 Lipschitz 优化算法的硬度结果,适用于所有温度。对于下限,我们证明了动力学达到并保持在任何近似局部最大值的最低能量之上。事实上,后一种行为适用于任何服从自然平滑估计的哈密顿,即使是在无序初始化和指数时间尺度上也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The threshold energy of low temperature Langevin dynamics for pure spherical spin glasses

We study the Langevin dynamics for spherical p $p$ -spin models, focusing on the short time regime described by the Cugliandolo–Kurchan equations. Confirming a prediction of Cugliandolo and Kurchan, we show the asymptotic energy achieved is exactly E ( p ) = 2 p 1 p $E_{\infty }(p)=2\sqrt {\frac{p-1}{p}}$ in the low temperature limit. The upper bound uses hardness results for Lipschitz optimization algorithms and applies for all temperatures. For the lower bound, we prove the dynamics reaches and stays above the lowest energy of any approximate local maximum. In fact the latter behavior holds for any Hamiltonian obeying natural smoothness estimates, even with disorder-dependent initialization and on exponential time-scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信