将生成式机器学习应用于入侵检测:系统映射研究与回顾

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
James Halvorsen, Clemente Izurieta, Haipeng Cai, Assefaw H. Gebremedhin
{"title":"将生成式机器学习应用于入侵检测:系统映射研究与回顾","authors":"James Halvorsen, Clemente Izurieta, Haipeng Cai, Assefaw H. Gebremedhin","doi":"10.1145/3659575","DOIUrl":null,"url":null,"abstract":"<p>Intrusion Detection Systems (IDSs) are an essential element of modern cyber defense, alerting users to when and where cyber-attacks occur. Machine learning can enable IDSs to further distinguish between benign and malicious behaviors, but it comes with several challenges, including lack of quality training data and high false positive rates. Generative Machine Learning Models (GMLMs) can help overcome these challenges. This paper offers an in-depth exploration of GMLMs’ application to intrusion detection. It gives: (1) a systematic mapping study of research at the intersection of GMLMs and IDSs, and (2) a detailed review providing insights and directions for future research.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Generative Machine Learning to Intrusion Detection: A Systematic Mapping Study and Review\",\"authors\":\"James Halvorsen, Clemente Izurieta, Haipeng Cai, Assefaw H. Gebremedhin\",\"doi\":\"10.1145/3659575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intrusion Detection Systems (IDSs) are an essential element of modern cyber defense, alerting users to when and where cyber-attacks occur. Machine learning can enable IDSs to further distinguish between benign and malicious behaviors, but it comes with several challenges, including lack of quality training data and high false positive rates. Generative Machine Learning Models (GMLMs) can help overcome these challenges. This paper offers an in-depth exploration of GMLMs’ application to intrusion detection. It gives: (1) a systematic mapping study of research at the intersection of GMLMs and IDSs, and (2) a detailed review providing insights and directions for future research.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3659575\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3659575","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

入侵检测系统(IDS)是现代网络防御的重要组成部分,可在网络攻击发生的时间和地点向用户发出警报。机器学习可以使 IDS 进一步区分良性和恶意行为,但它也面临着一些挑战,包括缺乏高质量的训练数据和高误报率。生成式机器学习模型(GMLM)有助于克服这些挑战。本文深入探讨了 GMLM 在入侵检测中的应用。它给出了:(1) 对 GMLM 和 IDS 交叉领域研究的系统性映射研究;(2) 提供见解和未来研究方向的详细综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Generative Machine Learning to Intrusion Detection: A Systematic Mapping Study and Review

Intrusion Detection Systems (IDSs) are an essential element of modern cyber defense, alerting users to when and where cyber-attacks occur. Machine learning can enable IDSs to further distinguish between benign and malicious behaviors, but it comes with several challenges, including lack of quality training data and high false positive rates. Generative Machine Learning Models (GMLMs) can help overcome these challenges. This paper offers an in-depth exploration of GMLMs’ application to intrusion detection. It gives: (1) a systematic mapping study of research at the intersection of GMLMs and IDSs, and (2) a detailed review providing insights and directions for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信