{"title":"通过局部能量优化实现全连接网络的高效激励传输","authors":"S. Sgroi, G. Zicari, A. Imparato, M. Paternostro","doi":"10.1140/epjqt/s40507-024-00238-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the excitation transfer across a fully connected quantum network whose sites energies can be artificially designed. Starting from a simplified model of a broadly-studied physical system, we systematically optimize its local energies to achieve high excitation transfer for various environmental conditions, using an adaptive Gradient Descent technique and Automatic Differentiation. We show that almost perfect transfer can be achieved with and without local dephasing, provided that the dephasing rates are not too large. We investigate our solutions in terms of resilience against variations in either the network connection strengths, or size, as well as coherence losses. We highlight the different features of a dephasing-free and dephasing-driven transfer. Our work gives further insight into the interplay between coherence and dephasing effects in excitation-transfer phenomena across fully connected quantum networks. In turn, this will help designing optimal transfer in artificial open networks through the simple manipulation of local energies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00238-w","citationCount":"0","resultStr":"{\"title\":\"Efficient excitation-transfer across fully connected networks via local-energy optimization\",\"authors\":\"S. Sgroi, G. Zicari, A. Imparato, M. Paternostro\",\"doi\":\"10.1140/epjqt/s40507-024-00238-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the excitation transfer across a fully connected quantum network whose sites energies can be artificially designed. Starting from a simplified model of a broadly-studied physical system, we systematically optimize its local energies to achieve high excitation transfer for various environmental conditions, using an adaptive Gradient Descent technique and Automatic Differentiation. We show that almost perfect transfer can be achieved with and without local dephasing, provided that the dephasing rates are not too large. We investigate our solutions in terms of resilience against variations in either the network connection strengths, or size, as well as coherence losses. We highlight the different features of a dephasing-free and dephasing-driven transfer. Our work gives further insight into the interplay between coherence and dephasing effects in excitation-transfer phenomena across fully connected quantum networks. In turn, this will help designing optimal transfer in artificial open networks through the simple manipulation of local energies.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00238-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00238-w\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00238-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Efficient excitation-transfer across fully connected networks via local-energy optimization
We study the excitation transfer across a fully connected quantum network whose sites energies can be artificially designed. Starting from a simplified model of a broadly-studied physical system, we systematically optimize its local energies to achieve high excitation transfer for various environmental conditions, using an adaptive Gradient Descent technique and Automatic Differentiation. We show that almost perfect transfer can be achieved with and without local dephasing, provided that the dephasing rates are not too large. We investigate our solutions in terms of resilience against variations in either the network connection strengths, or size, as well as coherence losses. We highlight the different features of a dephasing-free and dephasing-driven transfer. Our work gives further insight into the interplay between coherence and dephasing effects in excitation-transfer phenomena across fully connected quantum networks. In turn, this will help designing optimal transfer in artificial open networks through the simple manipulation of local energies.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.