{"title":"尖嘴藻(鼎叶目)整个开花期微真核细胞群落多样性、组装机制和活动的演替","authors":"Huatao Yuan , Ling Li , Yujie Wang , Senjie Lin","doi":"10.1016/j.hal.2024.102626","DOIUrl":null,"url":null,"abstract":"<div><p>Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a <em>Scrippsiella acuminata</em> (<em>S. acuminata</em>) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.</p></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"134 ","pages":"Article 102626"},"PeriodicalIF":5.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succession of diversity, assembly mechanisms, and activities of the microeukaryotic community throughout Scrippsiella acuminata (Dinophyceae) bloom phases\",\"authors\":\"Huatao Yuan , Ling Li , Yujie Wang , Senjie Lin\",\"doi\":\"10.1016/j.hal.2024.102626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a <em>Scrippsiella acuminata</em> (<em>S. acuminata</em>) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.</p></div>\",\"PeriodicalId\":12897,\"journal\":{\"name\":\"Harmful Algae\",\"volume\":\"134 \",\"pages\":\"Article 102626\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harmful Algae\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156898832400060X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harmful Algae","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156898832400060X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Succession of diversity, assembly mechanisms, and activities of the microeukaryotic community throughout Scrippsiella acuminata (Dinophyceae) bloom phases
Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a Scrippsiella acuminata (S. acuminata) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.
期刊介绍:
This journal provides a forum to promote knowledge of harmful microalgae and macroalgae, including cyanobacteria, as well as monitoring, management and control of these organisms.