改进的正字括号数界限或重温蒂埃马计算星差界限的算法

IF 1.8 2区 数学 Q1 MATHEMATICS
Michael Gnewuch
{"title":"改进的正字括号数界限或重温蒂埃马计算星差界限的算法","authors":"Michael Gnewuch","doi":"10.1016/j.jco.2024.101855","DOIUrl":null,"url":null,"abstract":"<div><p>We improve the best known upper bound for the bracketing number of <em>d</em>-dimensional axis-parallel boxes anchored in 0 (or, put differently, of lower left orthants intersected with the <em>d</em>-dimensional unit cube <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>). More precisely, we provide a better estimate for the cardinality of an algorithmic bracketing cover construction due to Eric Thiémard, which forms the core of his algorithm to approximate the star discrepancy of arbitrary point sets from Thiémard (2001) <span>[22]</span>. Moreover, the new upper bound for the bracketing number of anchored axis-parallel boxes yields an improved upper estimate for the bracketing number of arbitrary axis-parallel boxes in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In our upper bounds all constants are fully explicit.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000323/pdfft?md5=23c928b5ffffc6732ad1f4739311a07b&pid=1-s2.0-S0885064X24000323-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved bounds for the bracketing number of orthants or revisiting an algorithm of Thiémard to compute bounds for the star discrepancy\",\"authors\":\"Michael Gnewuch\",\"doi\":\"10.1016/j.jco.2024.101855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We improve the best known upper bound for the bracketing number of <em>d</em>-dimensional axis-parallel boxes anchored in 0 (or, put differently, of lower left orthants intersected with the <em>d</em>-dimensional unit cube <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>). More precisely, we provide a better estimate for the cardinality of an algorithmic bracketing cover construction due to Eric Thiémard, which forms the core of his algorithm to approximate the star discrepancy of arbitrary point sets from Thiémard (2001) <span>[22]</span>. Moreover, the new upper bound for the bracketing number of anchored axis-parallel boxes yields an improved upper estimate for the bracketing number of arbitrary axis-parallel boxes in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In our upper bounds all constants are fully explicit.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000323/pdfft?md5=23c928b5ffffc6732ad1f4739311a07b&pid=1-s2.0-S0885064X24000323-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000323\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000323","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们改进了锚定在 0 的 d 维轴平行盒(或者换句话说,与 d 维单位立方体 [0,1]d 相交的左下正交)的已知括弧数上限。更确切地说,我们为埃里克-蒂埃玛尔(Eric Thiémard)提出的括号盖构造的心数提供了一个更好的估计,该构造构成了蒂埃玛尔(Thiémard)(2001)[22]中近似任意点集星形差异算法的核心。此外,锚定轴平行盒的括弧数的新上界可以改进[0,1]d 中任意轴平行盒的括弧数的上界估计。在我们的上界中,所有常数都是完全明确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved bounds for the bracketing number of orthants or revisiting an algorithm of Thiémard to compute bounds for the star discrepancy

We improve the best known upper bound for the bracketing number of d-dimensional axis-parallel boxes anchored in 0 (or, put differently, of lower left orthants intersected with the d-dimensional unit cube [0,1]d). More precisely, we provide a better estimate for the cardinality of an algorithmic bracketing cover construction due to Eric Thiémard, which forms the core of his algorithm to approximate the star discrepancy of arbitrary point sets from Thiémard (2001) [22]. Moreover, the new upper bound for the bracketing number of anchored axis-parallel boxes yields an improved upper estimate for the bracketing number of arbitrary axis-parallel boxes in [0,1]d. In our upper bounds all constants are fully explicit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信