通过多参数编程实现基于机器学习的非线性过程显式模型预测控制

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wenlong Wang , Yujia Wang , Yuhe Tian , Zhe Wu
{"title":"通过多参数编程实现基于机器学习的非线性过程显式模型预测控制","authors":"Wenlong Wang ,&nbsp;Yujia Wang ,&nbsp;Yuhe Tian ,&nbsp;Zhe Wu","doi":"10.1016/j.compchemeng.2024.108689","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning-based model predictive control (ML-MPC) has been developed to control nonlinear processes with unknown first-principles models. While ML models can capture nonlinear dynamics of complex systems, the complexity of ML models leads to increased computation time for real-time implementation of ML-MPC. To address this issue, in this work, we propose an explicit ML-MPC framework for nonlinear processes using multi-parametric programming. Specifically, a self-adaptive approximation algorithm is first developed to obtain a piecewise linear affine function that approximates the behaviors of ML models. Then, multi-parametric quadratic programming (mpQP) problems are formulated to generate the solution map for states in discretized state–space. Furthermore, to accelerate the implementation of explicit ML-MPC, a neighbor-first search algorithm is developed. Finally, an example of a chemical reactor is used to demonstrate the effectiveness of the explicit ML-MPC.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit machine learning-based model predictive control of nonlinear processes via multi-parametric programming\",\"authors\":\"Wenlong Wang ,&nbsp;Yujia Wang ,&nbsp;Yuhe Tian ,&nbsp;Zhe Wu\",\"doi\":\"10.1016/j.compchemeng.2024.108689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning-based model predictive control (ML-MPC) has been developed to control nonlinear processes with unknown first-principles models. While ML models can capture nonlinear dynamics of complex systems, the complexity of ML models leads to increased computation time for real-time implementation of ML-MPC. To address this issue, in this work, we propose an explicit ML-MPC framework for nonlinear processes using multi-parametric programming. Specifically, a self-adaptive approximation algorithm is first developed to obtain a piecewise linear affine function that approximates the behaviors of ML models. Then, multi-parametric quadratic programming (mpQP) problems are formulated to generate the solution map for states in discretized state–space. Furthermore, to accelerate the implementation of explicit ML-MPC, a neighbor-first search algorithm is developed. Finally, an example of a chemical reactor is used to demonstrate the effectiveness of the explicit ML-MPC.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001078\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424001078","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于机器学习的模型预测控制(ML-MPC)是为控制第一原理模型未知的非线性过程而开发的。虽然 ML 模型可以捕捉复杂系统的非线性动态,但 ML 模型的复杂性导致 ML-MPC 实时实施的计算时间增加。为解决这一问题,我们在本研究中提出了一种使用多参数编程的非线性过程显式 ML-MPC 框架。具体来说,我们首先开发了一种自适应近似算法,以获得可近似 ML 模型行为的片断线性仿射函数。然后,制定多参数二次编程(mpQP)问题,为离散状态空间中的状态生成解图。此外,为了加速显式 ML-MPC 的实现,还开发了一种邻域优先搜索算法。最后,以化学反应器为例演示了显式 ML-MPC 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit machine learning-based model predictive control of nonlinear processes via multi-parametric programming

Machine learning-based model predictive control (ML-MPC) has been developed to control nonlinear processes with unknown first-principles models. While ML models can capture nonlinear dynamics of complex systems, the complexity of ML models leads to increased computation time for real-time implementation of ML-MPC. To address this issue, in this work, we propose an explicit ML-MPC framework for nonlinear processes using multi-parametric programming. Specifically, a self-adaptive approximation algorithm is first developed to obtain a piecewise linear affine function that approximates the behaviors of ML models. Then, multi-parametric quadratic programming (mpQP) problems are formulated to generate the solution map for states in discretized state–space. Furthermore, to accelerate the implementation of explicit ML-MPC, a neighbor-first search algorithm is developed. Finally, an example of a chemical reactor is used to demonstrate the effectiveness of the explicit ML-MPC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信