Gerard Finol, Gerard París, Pedro García-López, Marc Sánchez-Artigas
{"title":"在不平衡和不规则工作负载的算法中利用无服务器的固有弹性","authors":"Gerard Finol, Gerard París, Pedro García-López, Marc Sánchez-Artigas","doi":"10.1016/j.jpdc.2024.104891","DOIUrl":null,"url":null,"abstract":"<div><p>Function-as-a-Service execution model in serverless computing has been successful in running large-scale computations like MapReduce, linear algebra, and machine learning. However, little attention has been given to executing highly-dynamic parallel applications with <em>unbalanced</em> and <em>irregular</em> workloads. These algorithms are difficult to execute with good parallel efficiency due to the challenge of provisioning the required computing resources in time, leading to resource over- and under-provisioning in clusters of static size. We propose that the elasticity and fine-grained “pay-as-you-go model” of the FaaS model can be a key enabler for effectively running these algorithms in the cloud. We use a simple serverless executor pool abstraction, and evaluate it using three algorithms with <em>unbalanced</em> and <em>irregular</em> workloads. Results show that their serverless implementation can outperform a static Spark cluster of large virtual machines by up to 55% with the same cost, and can even outperform a single large virtual machine running locally.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"190 ","pages":"Article 104891"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0743731524000558/pdfft?md5=dfd5618d89af807a65e1b979fb557eaa&pid=1-s2.0-S0743731524000558-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploiting inherent elasticity of serverless in algorithms with unbalanced and irregular workloads\",\"authors\":\"Gerard Finol, Gerard París, Pedro García-López, Marc Sánchez-Artigas\",\"doi\":\"10.1016/j.jpdc.2024.104891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Function-as-a-Service execution model in serverless computing has been successful in running large-scale computations like MapReduce, linear algebra, and machine learning. However, little attention has been given to executing highly-dynamic parallel applications with <em>unbalanced</em> and <em>irregular</em> workloads. These algorithms are difficult to execute with good parallel efficiency due to the challenge of provisioning the required computing resources in time, leading to resource over- and under-provisioning in clusters of static size. We propose that the elasticity and fine-grained “pay-as-you-go model” of the FaaS model can be a key enabler for effectively running these algorithms in the cloud. We use a simple serverless executor pool abstraction, and evaluate it using three algorithms with <em>unbalanced</em> and <em>irregular</em> workloads. Results show that their serverless implementation can outperform a static Spark cluster of large virtual machines by up to 55% with the same cost, and can even outperform a single large virtual machine running locally.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"190 \",\"pages\":\"Article 104891\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000558/pdfft?md5=dfd5618d89af807a65e1b979fb557eaa&pid=1-s2.0-S0743731524000558-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000558\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000558","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Exploiting inherent elasticity of serverless in algorithms with unbalanced and irregular workloads
Function-as-a-Service execution model in serverless computing has been successful in running large-scale computations like MapReduce, linear algebra, and machine learning. However, little attention has been given to executing highly-dynamic parallel applications with unbalanced and irregular workloads. These algorithms are difficult to execute with good parallel efficiency due to the challenge of provisioning the required computing resources in time, leading to resource over- and under-provisioning in clusters of static size. We propose that the elasticity and fine-grained “pay-as-you-go model” of the FaaS model can be a key enabler for effectively running these algorithms in the cloud. We use a simple serverless executor pool abstraction, and evaluate it using three algorithms with unbalanced and irregular workloads. Results show that their serverless implementation can outperform a static Spark cluster of large virtual machines by up to 55% with the same cost, and can even outperform a single large virtual machine running locally.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.