多种工具的向量单调性假设

IF 9.9 3区 经济学 Q1 ECONOMICS
Leonard Goff
{"title":"多种工具的向量单调性假设","authors":"Leonard Goff","doi":"10.1016/j.jeconom.2024.105735","DOIUrl":null,"url":null,"abstract":"<div><p>When a researcher combines multiple instrumental variables for a single binary treatment, the monotonicity assumption of the local average treatment effects (LATE) framework can become restrictive: it requires that all units share a common direction of response even when separate instruments are shifted in opposing directions. What I call <em>vector monotonicity</em>, by contrast, simply assumes treatment uptake to be monotonic in all instruments. I characterize the class of causal parameters that are point identified under vector monotonicity, when the instruments are binary. This class includes, for example, the average treatment effect among units that are in any way responsive to the collection of instruments, or those that are responsive to a given subset of them. The identification results are constructive and yield a simple estimator for the identified treatment effect parameters. An empirical application revisits the labor market returns to college.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 1","pages":"Article 105735"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vector monotonicity assumption for multiple instruments\",\"authors\":\"Leonard Goff\",\"doi\":\"10.1016/j.jeconom.2024.105735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When a researcher combines multiple instrumental variables for a single binary treatment, the monotonicity assumption of the local average treatment effects (LATE) framework can become restrictive: it requires that all units share a common direction of response even when separate instruments are shifted in opposing directions. What I call <em>vector monotonicity</em>, by contrast, simply assumes treatment uptake to be monotonic in all instruments. I characterize the class of causal parameters that are point identified under vector monotonicity, when the instruments are binary. This class includes, for example, the average treatment effect among units that are in any way responsive to the collection of instruments, or those that are responsive to a given subset of them. The identification results are constructive and yield a simple estimator for the identified treatment effect parameters. An empirical application revisits the labor market returns to college.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"241 1\",\"pages\":\"Article 105735\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624000812\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624000812","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

当研究人员将多个工具变量结合到一个二元疗法中时,局部平均治疗效果(LATE)框架的单调性假设就会变得具有限制性:它要求所有单位都有一个共同的反应方向,即使不同的工具向相反的方向移动。相比之下,我所说的向量单调性只是假设所有工具中的治疗吸收是单调的。我描述了当工具为二元时,在向量单调性条件下点确定的因果参数类别。例如,该类参数包括以任何方式对工具集合做出反应的单位,或对其中特定子集做出反应的单位的平均治疗效果。识别结果是有建设性的,并为识别出的治疗效果参数提供了一个简单的估计值。实证应用重新审视了劳动力市场对大学教育的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vector monotonicity assumption for multiple instruments

When a researcher combines multiple instrumental variables for a single binary treatment, the monotonicity assumption of the local average treatment effects (LATE) framework can become restrictive: it requires that all units share a common direction of response even when separate instruments are shifted in opposing directions. What I call vector monotonicity, by contrast, simply assumes treatment uptake to be monotonic in all instruments. I characterize the class of causal parameters that are point identified under vector monotonicity, when the instruments are binary. This class includes, for example, the average treatment effect among units that are in any way responsive to the collection of instruments, or those that are responsive to a given subset of them. The identification results are constructive and yield a simple estimator for the identified treatment effect parameters. An empirical application revisits the labor market returns to college.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信