复格拉斯曼流形上不变复芬斯勒度量的特征

Pub Date : 2024-04-19 DOI:10.1016/j.difgeo.2024.102138
Pandeng Cao, Xiaoshu Ge, Chunping Zhong
{"title":"复格拉斯曼流形上不变复芬斯勒度量的特征","authors":"Pandeng Cao,&nbsp;Xiaoshu Ge,&nbsp;Chunping Zhong","doi":"10.1016/j.difgeo.2024.102138","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> be the complex Grassmann manifold and <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></msup><mi>P</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> be an arbitrary <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric. We prove that <em>F</em> is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that <em>F</em> is Hermitian quadratic if and only if <em>F</em> is a constant multiple of the canonical <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metric on <span><math><mi>P</mi></math></span>. In particular on the complex projective space <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, there exists no <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on <span><math><mi>P</mi></math></span> which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metrics on <span><math><mi>P</mi></math></span>, nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of invariant complex Finsler metrics on the complex Grassmann manifold\",\"authors\":\"Pandeng Cao,&nbsp;Xiaoshu Ge,&nbsp;Chunping Zhong\",\"doi\":\"10.1016/j.difgeo.2024.102138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> be the complex Grassmann manifold and <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></msup><mi>P</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> be an arbitrary <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric. We prove that <em>F</em> is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that <em>F</em> is Hermitian quadratic if and only if <em>F</em> is a constant multiple of the canonical <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metric on <span><math><mi>P</mi></math></span>. In particular on the complex projective space <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, there exists no <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on <span><math><mi>P</mi></math></span> which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metrics on <span><math><mi>P</mi></math></span>, nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 P:=U(p+q)/U(p)×U(q) 为复格拉斯曼流形,F:T1,0P→[0,+∞) 为任意 U(p+q)-invariant 强伪凸复 Finsler 度量。我们证明 F 是必要的 Kähler-Berwald 度量,它不是必要的赫米二次元度量。特别是在复投影空间 CPn=U(n+1)/U(n)×U(1) 上,除了 Fubini-Study 公设的常数倍之外,不存在其他 U(n+1)-invariant 强假凸复 Finsler 公设。这些不变度量特别有趣,因为它们是 P 上强伪凸复 Finsler 度量的最重要例子,而这些度量是椭圆度量,即它们享有与 P 上 U(p+q)不变 Kähler 度量非常相似的全形截面曲率和双截面曲率特性、然而,这些不变度量并不一定是赫米特四元数的,因此为紧凑情况下的复芬斯勒几何提供了非简单的明确例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Characterization of invariant complex Finsler metrics on the complex Grassmann manifold

Let P:=U(p+q)/U(p)×U(q) be the complex Grassmann manifold and F:T1,0P[0,+) be an arbitrary U(p+q)-invariant strongly pseudoconvex complex Finsler metric. We prove that F is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that F is Hermitian quadratic if and only if F is a constant multiple of the canonical U(p+q)-invariant Kähler metric on P. In particular on the complex projective space CPn=U(n+1)/U(n)×U(1), there exists no U(n+1)-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on P which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the U(p+q)-invariant Kähler metrics on P, nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信