{"title":"复格拉斯曼流形上不变复芬斯勒度量的特征","authors":"Pandeng Cao, Xiaoshu Ge, Chunping Zhong","doi":"10.1016/j.difgeo.2024.102138","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> be the complex Grassmann manifold and <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></msup><mi>P</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> be an arbitrary <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric. We prove that <em>F</em> is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that <em>F</em> is Hermitian quadratic if and only if <em>F</em> is a constant multiple of the canonical <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metric on <span><math><mi>P</mi></math></span>. In particular on the complex projective space <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, there exists no <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on <span><math><mi>P</mi></math></span> which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metrics on <span><math><mi>P</mi></math></span>, nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102138"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of invariant complex Finsler metrics on the complex Grassmann manifold\",\"authors\":\"Pandeng Cao, Xiaoshu Ge, Chunping Zhong\",\"doi\":\"10.1016/j.difgeo.2024.102138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> be the complex Grassmann manifold and <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></msup><mi>P</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> be an arbitrary <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric. We prove that <em>F</em> is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that <em>F</em> is Hermitian quadratic if and only if <em>F</em> is a constant multiple of the canonical <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metric on <span><math><mi>P</mi></math></span>. In particular on the complex projective space <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, there exists no <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on <span><math><mi>P</mi></math></span> which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metrics on <span><math><mi>P</mi></math></span>, nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"94 \",\"pages\":\"Article 102138\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000317\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000317","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 P:=U(p+q)/U(p)×U(q) 为复格拉斯曼流形,F:T1,0P→[0,+∞) 为任意 U(p+q)-invariant 强伪凸复 Finsler 度量。我们证明 F 是必要的 Kähler-Berwald 度量,它不是必要的赫米二次元度量。特别是在复投影空间 CPn=U(n+1)/U(n)×U(1) 上,除了 Fubini-Study 公设的常数倍之外,不存在其他 U(n+1)-invariant 强假凸复 Finsler 公设。这些不变度量特别有趣,因为它们是 P 上强伪凸复 Finsler 度量的最重要例子,而这些度量是椭圆度量,即它们享有与 P 上 U(p+q)不变 Kähler 度量非常相似的全形截面曲率和双截面曲率特性、然而,这些不变度量并不一定是赫米特四元数的,因此为紧凑情况下的复芬斯勒几何提供了非简单的明确例子。
Characterization of invariant complex Finsler metrics on the complex Grassmann manifold
Let be the complex Grassmann manifold and be an arbitrary -invariant strongly pseudoconvex complex Finsler metric. We prove that F is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that F is Hermitian quadratic if and only if F is a constant multiple of the canonical -invariant Kähler metric on . In particular on the complex projective space , there exists no -invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the -invariant Kähler metrics on , nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.