PQA:探索产品量化在 DNN 硬件加速中的潜力

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Ahmed F. AbouElhamayed, Angela Cui, Javier Fernandez-Marques, Nicholas D. Lane, Mohamed S. Abdelfattah
{"title":"PQA:探索产品量化在 DNN 硬件加速中的潜力","authors":"Ahmed F. AbouElhamayed, Angela Cui, Javier Fernandez-Marques, Nicholas D. Lane, Mohamed S. Abdelfattah","doi":"10.1145/3656643","DOIUrl":null,"url":null,"abstract":"<p>Conventional multiply-accumulate (MAC) operations have long dominated computation time for deep neural networks (DNNs), especially convolutional neural networks (CNNs). Recently, product quantization (PQ) has been applied to these workloads, replacing MACs with memory lookups to pre-computed dot products. To better understand the efficiency tradeoffs of product-quantized DNNs (PQ-DNNs), we create a custom hardware accelerator to parallelize and accelerate nearest-neighbor search and dot-product lookups. Additionally, we perform an empirical study to investigate the efficiency–accuracy tradeoffs of different PQ parameterizations and training methods. We identify PQ configurations that improve performance-per-area for ResNet20 by up to 3.1 ×, even when compared to a highly optimized conventional DNN accelerator, with similar improvements on two additional compact DNNs. When comparing to recent PQ solutions, we outperform prior work by 4 × in terms of performance-per-area with a 0.6% accuracy degradation. Finally, we reduce the bitwidth of PQ operations to investigate the impact on both hardware efficiency and accuracy. With only 2–6-bit precision on three compact DNNs, we were able to maintain DNN accuracy eliminating the need for DSPs.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"4 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration\",\"authors\":\"Ahmed F. AbouElhamayed, Angela Cui, Javier Fernandez-Marques, Nicholas D. Lane, Mohamed S. Abdelfattah\",\"doi\":\"10.1145/3656643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional multiply-accumulate (MAC) operations have long dominated computation time for deep neural networks (DNNs), especially convolutional neural networks (CNNs). Recently, product quantization (PQ) has been applied to these workloads, replacing MACs with memory lookups to pre-computed dot products. To better understand the efficiency tradeoffs of product-quantized DNNs (PQ-DNNs), we create a custom hardware accelerator to parallelize and accelerate nearest-neighbor search and dot-product lookups. Additionally, we perform an empirical study to investigate the efficiency–accuracy tradeoffs of different PQ parameterizations and training methods. We identify PQ configurations that improve performance-per-area for ResNet20 by up to 3.1 ×, even when compared to a highly optimized conventional DNN accelerator, with similar improvements on two additional compact DNNs. When comparing to recent PQ solutions, we outperform prior work by 4 × in terms of performance-per-area with a 0.6% accuracy degradation. Finally, we reduce the bitwidth of PQ operations to investigate the impact on both hardware efficiency and accuracy. With only 2–6-bit precision on three compact DNNs, we were able to maintain DNN accuracy eliminating the need for DSPs.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656643\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656643","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

对于深度神经网络(DNN),尤其是卷积神经网络(CNN)来说,传统的乘积(MAC)运算长期以来一直占据着计算时间的主导地位。最近,积量化(PQ)被应用到这些工作负载中,用内存查找预计算点积的方式取代了 MAC。为了更好地理解积量化 DNN(PQ-DNN)的效率权衡,我们创建了一个定制硬件加速器,用于并行加速最近邻搜索和点积查找。此外,我们还进行了一项实证研究,以调查不同 PQ 参数化和训练方法在效率和准确性之间的权衡。我们发现,即使与高度优化的传统 DNN 加速器相比,PQ 配置也能将 ResNet20 的单位面积性能提高 3.1 倍,而且在另外两个紧凑型 DNN 上也有类似的提高。与最近的 PQ 解决方案相比,我们的单位面积性能提高了 4 倍,准确率降低了 0.6%。最后,我们降低了 PQ 运算的位宽,以研究其对硬件效率和精度的影响。在三个紧凑型 DNN 上仅使用 2-6 位精度的情况下,我们能够保持 DNN 的精度,而无需使用 DSP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration

Conventional multiply-accumulate (MAC) operations have long dominated computation time for deep neural networks (DNNs), especially convolutional neural networks (CNNs). Recently, product quantization (PQ) has been applied to these workloads, replacing MACs with memory lookups to pre-computed dot products. To better understand the efficiency tradeoffs of product-quantized DNNs (PQ-DNNs), we create a custom hardware accelerator to parallelize and accelerate nearest-neighbor search and dot-product lookups. Additionally, we perform an empirical study to investigate the efficiency–accuracy tradeoffs of different PQ parameterizations and training methods. We identify PQ configurations that improve performance-per-area for ResNet20 by up to 3.1 ×, even when compared to a highly optimized conventional DNN accelerator, with similar improvements on two additional compact DNNs. When comparing to recent PQ solutions, we outperform prior work by 4 × in terms of performance-per-area with a 0.6% accuracy degradation. Finally, we reduce the bitwidth of PQ operations to investigate the impact on both hardware efficiency and accuracy. With only 2–6-bit precision on three compact DNNs, we were able to maintain DNN accuracy eliminating the need for DSPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信