南极洲陆地上的人为噪声:背景信息、挑战和机遇简评

IF 1.9 4区 地球科学 Q3 ECOLOGY
Lucia Ziegler, Alvaro Soutullo
{"title":"南极洲陆地上的人为噪声:背景信息、挑战和机遇简评","authors":"Lucia Ziegler, Alvaro Soutullo","doi":"10.33265/polar.v43.9859","DOIUrl":null,"url":null,"abstract":"<p>Anthropogenic noise is an inevitable by-product of human activities. However, the potential effects of human noise on terrestrial Antarctica’s ecosystems have been understudied. Documented impacts encompass stress, alterations in behavioural patterns, auditory masking, and, in severe instances, mortality. This Perspective note aims to call attention to human-generated noise as potential sources of impact on Antarctic wildlife and to highlight the potential of soundscape analysis as a flexible, cost-effective tool for environmental monitoring across Antarctica, complementing other non-invasive approaches. Acoustic monitoring in terrestrial environments has been extensively used in different parts of the world to assess biodiversity, monitor populations’ status and trends, and identify and monitor sources of anthropogenic disturbance. Technological advances in passive acoustic monitoring allow for the gathering of detailed information with little need of human attention, and powerful processing tools and algorithms enable researchers to analyse large collections of audio data. Cold climates limit battery-operated instruments, but solar panels in Antarctic summer trials revealed over 100 days of unattended operation, which is promising for the incorporation of acoustic monitoring in Antarctica’s environmental management toolbox.</p>","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":"12 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthropogenic noise in terrestrial Antarctica: a short review of background information, challenges and opportunities\",\"authors\":\"Lucia Ziegler, Alvaro Soutullo\",\"doi\":\"10.33265/polar.v43.9859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anthropogenic noise is an inevitable by-product of human activities. However, the potential effects of human noise on terrestrial Antarctica’s ecosystems have been understudied. Documented impacts encompass stress, alterations in behavioural patterns, auditory masking, and, in severe instances, mortality. This Perspective note aims to call attention to human-generated noise as potential sources of impact on Antarctic wildlife and to highlight the potential of soundscape analysis as a flexible, cost-effective tool for environmental monitoring across Antarctica, complementing other non-invasive approaches. Acoustic monitoring in terrestrial environments has been extensively used in different parts of the world to assess biodiversity, monitor populations’ status and trends, and identify and monitor sources of anthropogenic disturbance. Technological advances in passive acoustic monitoring allow for the gathering of detailed information with little need of human attention, and powerful processing tools and algorithms enable researchers to analyse large collections of audio data. Cold climates limit battery-operated instruments, but solar panels in Antarctic summer trials revealed over 100 days of unattended operation, which is promising for the incorporation of acoustic monitoring in Antarctica’s environmental management toolbox.</p>\",\"PeriodicalId\":49684,\"journal\":{\"name\":\"Polar Research\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.33265/polar.v43.9859\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v43.9859","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人为噪音是人类活动不可避免的副产品。然而,人类噪声对南极洲陆地生态系统的潜在影响一直未得到充分研究。记录在案的影响包括压力、行为模式改变、听觉掩蔽,严重时还会导致死亡。本视角说明旨在呼吁人们关注人类产生的噪音对南极野生动物的潜在影响,并强调声景分析作为一种灵活、具有成本效益的工具在南极环境监测方面的潜力,是对其他非侵入式方法的补充。陆地环境中的声学监测已在世界不同地区广泛用于评估生物多样性、监测种群状况和趋势,以及识别和监测人为干扰源。被动声学监测技术的进步使研究人员能够在几乎不需要人类关注的情况下收集详细信息,强大的处理工具和算法使研究人员能够分析大量的音频数据。寒冷的气候限制了电池供电的仪器,但在南极夏季试验中,太阳能电池板可在无人看管的情况下工作 100 多天,这为将声学监测纳入南极环境管理工具箱带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anthropogenic noise in terrestrial Antarctica: a short review of background information, challenges and opportunities

Anthropogenic noise is an inevitable by-product of human activities. However, the potential effects of human noise on terrestrial Antarctica’s ecosystems have been understudied. Documented impacts encompass stress, alterations in behavioural patterns, auditory masking, and, in severe instances, mortality. This Perspective note aims to call attention to human-generated noise as potential sources of impact on Antarctic wildlife and to highlight the potential of soundscape analysis as a flexible, cost-effective tool for environmental monitoring across Antarctica, complementing other non-invasive approaches. Acoustic monitoring in terrestrial environments has been extensively used in different parts of the world to assess biodiversity, monitor populations’ status and trends, and identify and monitor sources of anthropogenic disturbance. Technological advances in passive acoustic monitoring allow for the gathering of detailed information with little need of human attention, and powerful processing tools and algorithms enable researchers to analyse large collections of audio data. Cold climates limit battery-operated instruments, but solar panels in Antarctic summer trials revealed over 100 days of unattended operation, which is promising for the incorporation of acoustic monitoring in Antarctica’s environmental management toolbox.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polar Research
Polar Research 地学-地球科学综合
CiteScore
3.20
自引率
5.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public. Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time. The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信