基于范围控制的类不平衡和优化颗粒弹性网回归特征选择,用于信贷风险评估

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Vadipina Amarnadh, Nageswara Rao Moparthi
{"title":"基于范围控制的类不平衡和优化颗粒弹性网回归特征选择,用于信贷风险评估","authors":"Vadipina Amarnadh, Nageswara Rao Moparthi","doi":"10.1007/s10115-024-02103-9","DOIUrl":null,"url":null,"abstract":"<p>Credit risk, stemming from the failure of a contractual party, is a significant variable in financial institutions. Assessing credit risk involves evaluating the creditworthiness of individuals, businesses, or entities to predict the likelihood of defaulting on financial obligations. While financial institutions categorize consumers based on creditworthiness, there is no universally defined set of attributes or indices. This research proposes Range control-based class imbalance and Optimized Granular Elastic Net regression (ROGENet) for feature selection in credit risk assessment. The dataset exhibits severe class imbalance, addressed using Range-Controlled Synthetic Minority Oversampling TEchnique (RCSMOTE). The balanced data undergo Granular Elastic Net regression with hybrid Gazelle sand cat Swarm Optimization (GENGSO) for feature selection. Elastic net, ensuring sparsity and grouping for correlated features, proves beneficial for assessing credit risk. ROGENet provides a detailed perspective on credit risk evaluation, surpassing conventional methods. The oversampling feature selection enhances the accuracy of minority class by 99.4, 99, 98.6 and 97.3%, respectively.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"34 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment\",\"authors\":\"Vadipina Amarnadh, Nageswara Rao Moparthi\",\"doi\":\"10.1007/s10115-024-02103-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Credit risk, stemming from the failure of a contractual party, is a significant variable in financial institutions. Assessing credit risk involves evaluating the creditworthiness of individuals, businesses, or entities to predict the likelihood of defaulting on financial obligations. While financial institutions categorize consumers based on creditworthiness, there is no universally defined set of attributes or indices. This research proposes Range control-based class imbalance and Optimized Granular Elastic Net regression (ROGENet) for feature selection in credit risk assessment. The dataset exhibits severe class imbalance, addressed using Range-Controlled Synthetic Minority Oversampling TEchnique (RCSMOTE). The balanced data undergo Granular Elastic Net regression with hybrid Gazelle sand cat Swarm Optimization (GENGSO) for feature selection. Elastic net, ensuring sparsity and grouping for correlated features, proves beneficial for assessing credit risk. ROGENet provides a detailed perspective on credit risk evaluation, surpassing conventional methods. The oversampling feature selection enhances the accuracy of minority class by 99.4, 99, 98.6 and 97.3%, respectively.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02103-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02103-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

信用风险源于合同一方的违约,是金融机构的一个重要变量。评估信用风险涉及评估个人、企业或实体的信用度,以预测其拖欠金融债务的可能性。虽然金融机构会根据信用度对消费者进行分类,但并没有一套普遍定义的属性或指数。本研究提出了基于范围控制的类不平衡和优化颗粒弹性网回归(ROGENet),用于信用风险评估中的特征选择。数据集显示出严重的类不平衡,使用范围控制合成少数群体过度采样技术(RCSMOTE)解决了这一问题。平衡数据经过粒度弹性网回归和混合瞪羚沙猫群优化(GENGSO)进行特征选择。弹性网确保了相关特征的稀疏性和分组,证明有利于评估信贷风险。ROGENet 为信用风险评估提供了一个详细的视角,超越了传统方法。通过超采样特征选择,少数群体类别的准确率分别提高了 99.4%、99%、98.6% 和 97.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment

Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment

Credit risk, stemming from the failure of a contractual party, is a significant variable in financial institutions. Assessing credit risk involves evaluating the creditworthiness of individuals, businesses, or entities to predict the likelihood of defaulting on financial obligations. While financial institutions categorize consumers based on creditworthiness, there is no universally defined set of attributes or indices. This research proposes Range control-based class imbalance and Optimized Granular Elastic Net regression (ROGENet) for feature selection in credit risk assessment. The dataset exhibits severe class imbalance, addressed using Range-Controlled Synthetic Minority Oversampling TEchnique (RCSMOTE). The balanced data undergo Granular Elastic Net regression with hybrid Gazelle sand cat Swarm Optimization (GENGSO) for feature selection. Elastic net, ensuring sparsity and grouping for correlated features, proves beneficial for assessing credit risk. ROGENet provides a detailed perspective on credit risk evaluation, surpassing conventional methods. The oversampling feature selection enhances the accuracy of minority class by 99.4, 99, 98.6 and 97.3%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信